Suárez Dimas, Díaz Natalia, Fontecilla-Camps Juan, Field Martin J
Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
Biochemistry. 2006 Jun 20;45(24):7529-43. doi: 10.1021/bi052176p.
To investigate the mechanism of the deacylation reaction in the active site of human butyrylcholinesterase (BuChE), we carried out quantum mechanical (QM) calculations on cluster models of the active site built from a crystallographic structure. The models consisted of the substrate butyrate moiety, the catalytic triad of residues (Ser198, Glu325, and His438), the "oxy-anion hole" (Gly116, Gly117, and Ala199), the side chain of Glu197, four water molecules, the side chain of Ser225, and the peptide linkage between Val321 and Asn322. Analyses of the equilibrium geometries, electronic properties, and energies of the QM models gave insights into the catalytic mechanism. In addition, the QM calculations provided the data required to build a molecular mechanics representation of the reactive BuChE region that was employed in molecular dynamics simulations followed by molecular-mechanics-Poisson-Boltzmann (MM-PB) calculations. Subsequently, we combined the QM energies with average MM-PB energies to estimate the free energy of the reactive structures in the enzyme. The rate-determining step corresponds to the formation of a tetrahedral intermediate with a free-energy barrier of approximately 14.0 kcal/mol. The modulation of the BuChE activity, exerted by either neutral molecules (glycerol, GOL) or a second butyrylcholine (CHO) molecule bound to the cation-pi site, does not involve any significant allosteric effect. Interestingly, the presence of GOL or CHO stabilizes a product complex formed between a butyric acid molecule and BuChE. These results are in consonance with the crystallographic structure of BuChE, in which the catalytic Ser198 interacts with a butyric fragment, while the cation-pi site is occupied by one GOL molecule.
为了研究人丁酰胆碱酯酶(BuChE)活性位点上脱酰基反应的机制,我们对基于晶体结构构建的活性位点簇模型进行了量子力学(QM)计算。模型包括底物丁酸部分、催化三联体残基(Ser198、Glu325和His438)、“氧阴离子洞”(Gly116、Gly117和Ala199)、Glu197的侧链、四个水分子、Ser225的侧链以及Val321和Asn322之间的肽键。对QM模型的平衡几何结构、电子性质和能量进行分析,有助于深入了解催化机制。此外,QM计算提供了构建反应性BuChE区域分子力学表示所需的数据,该表示用于分子动力学模拟,随后进行分子力学-泊松-玻尔兹曼(MM-PB)计算。随后,我们将QM能量与平均MM-PB能量相结合,以估计酶中反应性结构的自由能。速率决定步骤对应于形成四面体中间体,其自由能垒约为14.0千卡/摩尔。与阳离子-π位点结合的中性分子(甘油,GOL)或第二个丁酰胆碱(CHO)分子对BuChE活性的调节不涉及任何显著的变构效应。有趣的是,GOL或CHO的存在稳定了丁酸分子与BuChE之间形成的产物复合物。这些结果与BuChE的晶体结构一致,其中催化性的Ser198与丁酸片段相互作用,而阳离子-π位点被一个GOL分子占据。