Suppr超能文献

为何亲属选择和群体选择模型可能不足以解释人类的利他行为。

Why kin and group selection models may not be enough to explain human other-regarding behaviour.

作者信息

van Veelen Matthijs

机构信息

CREED, Universiteit van Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands.

出版信息

J Theor Biol. 2006 Oct 7;242(3):790-7. doi: 10.1016/j.jtbi.2006.04.022.

Abstract

Models of kin or group selection usually feature only one possible fitness transfer. The phenotypes are either to make this transfer or not to make it and for any given fitness transfer, Hamilton's rule predicts which of the two phenotypes will spread. In this article we allow for the possibility that different individuals or different generations face similar, but not necessarily identical possibilities for fitness transfers. In this setting, phenotypes are preference relations, which concisely specify behaviour for a range of possible fitness transfers (rather than being a specification for only one particular situation an animal or human can be in). For this more general set-up, we find that only preference relations that are linear in fitnesses can be explained using models of kin selection and that the same applies to a large class of group selection models. This provides a new implication of hierarchical selection models that could in principle falsify them, even if relatedness--or a parameter for assortativeness--is unknown. The empirical evidence for humans suggests that hierarchical selection models alone are not enough to explain their other-regarding or altruistic behaviour.

摘要

亲属选择或群体选择模型通常仅具有一种可能的适应性转移。表型要么进行这种转移,要么不进行转移,对于任何给定的适应性转移,汉密尔顿法则预测这两种表型中的哪一种会扩散。在本文中,我们考虑了不同个体或不同世代面临相似但不一定相同的适应性转移可能性。在这种情况下,表型是偏好关系,它简洁地指定了一系列可能的适应性转移的行为(而不是仅针对动物或人类可能处于的一种特定情况的规范)。对于这种更一般的设置,我们发现只有在适应性方面呈线性的偏好关系才能用亲属选择模型来解释,并且这同样适用于一大类群体选择模型。这为层次选择模型提供了一个新的含义,原则上可以证伪这些模型,即使亲缘关系——或 assortativeness 参数——未知。关于人类的经验证据表明,仅靠层次选择模型不足以解释他们的利他行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验