Suppr超能文献

随机网络中的网络基序识别

Network motif identification in stochastic networks.

作者信息

Jiang Rui, Tu Zhidong, Chen Ting, Sun Fengzhu

机构信息

Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9404-9. doi: 10.1073/pnas.0507841103. Epub 2006 Jun 12.

Abstract

Network motifs have been identified in a wide range of networks across many scientific disciplines and are suggested to be the basic building blocks of most complex networks. Nonetheless, many networks come with intrinsic and/or experimental uncertainties and should be treated as stochastic networks. The building blocks in these networks thus may also have stochastic properties. In this article, we study stochastic network motifs derived from families of mutually similar but not necessarily identical patterns of interconnections. We establish a finite mixture model for stochastic networks and develop an expectation-maximization algorithm for identifying stochastic network motifs. We apply this approach to the transcriptional regulatory networks of Escherichia coli and Saccharomyces cerevisiae, as well as the protein-protein interaction networks of seven species, and identify several stochastic network motifs that are consistent with current biological knowledge.

摘要

网络基序已在众多科学学科的广泛网络中被识别出来,并被认为是大多数复杂网络的基本构建单元。然而,许多网络存在内在和/或实验上的不确定性,应被视为随机网络。因此,这些网络中的构建单元也可能具有随机性质。在本文中,我们研究了源自相互相似但不一定相同的互连模式家族的随机网络基序。我们为随机网络建立了一个有限混合模型,并开发了一种期望最大化算法来识别随机网络基序。我们将这种方法应用于大肠杆菌和酿酒酵母的转录调控网络,以及七个物种的蛋白质-蛋白质相互作用网络,并识别出了几个与当前生物学知识一致的随机网络基序。

相似文献

1
Network motif identification in stochastic networks.随机网络中的网络基序识别
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9404-9. doi: 10.1073/pnas.0507841103. Epub 2006 Jun 12.
8
Mean-field versus stochastic models for transcriptional regulation.用于转录调控的平均场模型与随机模型
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031909. doi: 10.1103/PhysRevE.78.031909. Epub 2008 Sep 10.

本文引用的文献

4
Superfamilies of evolved and designed networks.进化与设计网络的超家族。
Science. 2004 Mar 5;303(5663):1538-42. doi: 10.1126/science.1089167.
6
The Database of Interacting Proteins: 2004 update.相互作用蛋白质数据库:2004年更新版。
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51. doi: 10.1093/nar/gkh086.
8
Subgraphs in random networks.随机网络中的子图
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 2):026127. doi: 10.1103/PhysRevE.68.026127. Epub 2003 Aug 25.
9
Scale-free networks.无标度网络。
Sci Am. 2003 May;288(5):60-9. doi: 10.1038/scientificamerican0503-60.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验