Suppr超能文献

人类选择中的成像评估模型。

Imaging valuation models in human choice.

作者信息

Montague P Read, King-Casas Brooks, Cohen Jonathan D

机构信息

Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Annu Rev Neurosci. 2006;29:417-48. doi: 10.1146/annurev.neuro.29.051605.112903.

Abstract

To make a decision, a system must assign value to each of its available choices. In the human brain, one approach to studying valuation has used rewarding stimuli to map out brain responses by varying the dimension or importance of the rewards. However, theoretical models have taught us that value computations are complex, and so reward probes alone can give only partial information about neural responses related to valuation. In recent years, computationally principled models of value learning have been used in conjunction with noninvasive neuroimaging to tease out neural valuation responses related to reward-learning and decision-making. We restrict our review to the role of these models in a new generation of experiments that seeks to build on a now-large body of diverse reward-related brain responses. We show that the models and the measurements based on them point the way forward in two important directions: the valuation of time and the valuation of fictive experience.

摘要

为了做出决策,一个系统必须为其每个可用选择赋予价值。在人类大脑中,一种研究价值评估的方法是通过改变奖励的维度或重要性,使用奖励性刺激来描绘大脑的反应。然而,理论模型告诉我们,价值计算是复杂的,因此仅靠奖励探针只能提供与价值评估相关的神经反应的部分信息。近年来,基于计算原理的价值学习模型已与非侵入性神经成像结合使用,以梳理出与奖励学习和决策相关的神经价值评估反应。我们将综述限制在这些模型在新一代实验中的作用,这些实验旨在基于目前大量多样的与奖励相关的大脑反应进行拓展。我们表明,这些模型以及基于它们的测量在两个重要方向上指明了前进的道路:时间评估和虚拟体验评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验