Friedrich Oliver
Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany.
Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):403-9. doi: 10.1097/01.mco.0000232900.59168.a0.
The current review focuses on recent studies, both clinical and from basic sciences, which approach possible pathomechanisms of critical illness myopathy in order to better derive potential clinical strategies for a preventive or curative clinical setting. Trends and concepts of clinical diagnosis and handling will be evaluated and their implications for muscle physiology and nutritional/metabolic intervention discussed.
Conventional electrophysiology was combined with direct muscle stimulation to better differentiate critical illness myopathy from other neuromuscular disorders in critical illness. Muscle weakness was the result of impaired excitation-contraction-coupling at the level of the sarcolemma and the sarcoplasmic reticulum membrane. Critical illness may alter sodium and ryanodine receptor calcium-release channels. Also, increased muscle proteolysis contributes to weakness in critical illness myopathy. Myosin loss is due to the risk factors systemic inflammatory response syndrome/sepsis, steroids and neuromuscular blocking agents. Steroids can also induce necrosis and apoptosis in muscle. Inflammatory mediators aggravated muscle metabolic failure in critical illness myopathy. Ubiquitin-proteasome pathways, cyclooxygenase activation, altered glucose transporter expression, MyoD suppression, impaired respiratory chain enzymes, ATP depletion, glucose toxicity and insulin resistance can all contribute to the critical illness myopathy pathomechanism.
The search for pathomechanisms is an important task for both clinical and basic sciences. Targets for treatment or prevention of critical illness myopathy include systemic inflammatory response, increased proteolysis and reduced antioxidative capacitance in critically ill patients.
本综述聚焦于近期临床及基础科学研究,这些研究探讨了危重病性肌病可能的发病机制,以便更好地推导在预防或治疗临床环境中的潜在临床策略。将评估临床诊断和处理的趋势及概念,并讨论它们对肌肉生理学以及营养/代谢干预的影响。
传统电生理学与直接肌肉刺激相结合,以更好地区分危重病性肌病与危重病中的其他神经肌肉疾病。肌肉无力是肌膜和肌浆网膜水平兴奋-收缩偶联受损的结果。危重病可能改变钠和兰尼碱受体钙释放通道。此外,肌肉蛋白水解增加导致危重病性肌病中的肌肉无力。肌球蛋白丢失归因于全身炎症反应综合征/脓毒症、类固醇和神经肌肉阻滞剂等危险因素。类固醇还可诱导肌肉坏死和凋亡。炎症介质加重了危重病性肌病中的肌肉代谢衰竭。泛素-蛋白酶体途径、环氧化酶激活、葡萄糖转运蛋白表达改变、肌细胞生成素抑制、呼吸链酶受损、ATP耗竭、葡萄糖毒性和胰岛素抵抗均可能促成危重病性肌病的发病机制。
寻找发病机制对临床和基础科学而言都是一项重要任务。治疗或预防危重病性肌病的靶点包括危重病患者的全身炎症反应、蛋白水解增加和抗氧化能力降低。