Suppr超能文献

使用L1范数来选择能够从病毒基因序列准确预测药物反应表型的稀疏参数集。

Use of the l1 norm for selection of sparse parameter sets that accurately predict drug response phenotype from viral genetic sequences.

作者信息

Matthew Rabinowitz, Banjevic Milena, Chan A S, Myers Lance, Wolkowicz Roland, Haberer Jessica, Singer Joshua

机构信息

Gene Security Network, Portola Valley, CA, USA.

出版信息

AMIA Annu Symp Proc. 2005;2005:505-9.

Abstract

We describe the use of the l1 norm for selection of a sparse set of model parameters that are used in the prediction of viral drug response, based on genetic sequence data of the Human Immunodeficiency Virus (HIV) reverse-transcriptase enzyme. We discuss the use of the l1 norm in the Least Absolute Selection and Shrinkage Operator (LASSO) regression model and the Support Vector Machine model. When tested by cross-validation with laboratory measurements, these models predict viral phenotype, or resistance, in response to Reverse-Transcriptase Inhibitors (RTIs) more accurately than other known models. The l1 norm is the most selective convex function, which sets a large proportion of the parameters to zero and also assures that a single optimal solution will be found, given a particular model formulation and training data set. A statistical model that reliably predicts viral drug response is an important tool in the selection of Anti-Retroviral Therapy. These techniques have general application to modeling phenotype from complex genetic data.

摘要

我们描述了基于人类免疫缺陷病毒(HIV)逆转录酶的基因序列数据,使用l1范数来选择一组稀疏的模型参数,这些参数用于预测病毒药物反应。我们讨论了l1范数在最小绝对收缩选择算子(LASSO)回归模型和支持向量机模型中的应用。当通过与实验室测量值进行交叉验证测试时,这些模型比其他已知模型更准确地预测了针对逆转录酶抑制剂(RTIs)的病毒表型或耐药性。l1范数是最具选择性的凸函数,它将大部分参数设置为零,并确保在给定特定模型公式和训练数据集的情况下能够找到单个最优解。一个能够可靠预测病毒药物反应的统计模型是抗逆转录病毒疗法选择中的重要工具。这些技术在从复杂遗传数据建模表型方面具有广泛应用。

相似文献

5
Analysis of protease and reverse transcriptase genes of HIV for antiretroviral drug resistance in Jamaican adults.
AIDS Res Hum Retroviruses. 2012 Aug;28(8):923-7. doi: 10.1089/aid.2011.0312. Epub 2012 Feb 17.
7
Accommodating uncertainty in a tree set for function estimation.
Stat Appl Genet Mol Biol. 2008;7(1):Article5. doi: 10.2202/1544-6115.1324. Epub 2008 Feb 19.
8
Prevalence of antiretroviral drug resistance in antiretroviral-naive individuals.
J Int Assoc Physicians AIDS Care (Chic). 2009 May-Jun;8(3):193-5. doi: 10.1177/1545109709335751. Epub 2009 May 4.

引用本文的文献

1
Construction of a prognostic risk model for uveal melanoma based on immune-related long noncoding RNA.
Medicine (Baltimore). 2024 Sep 6;103(36):e39385. doi: 10.1097/MD.0000000000039385.

本文引用的文献

3
Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks.
J Infect Dis. 2003 Sep 1;188(5):653-60. doi: 10.1086/377453. Epub 2003 Aug 14.
4
Drug resistance mutations in HIV-1.
Top HIV Med. 2003 May-Jun;11(3):92-6.
5
Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes.
Nucleic Acids Res. 2003 Jul 1;31(13):3850-5. doi: 10.1093/nar/gkg575.
8
Human immunodeficiency virus reverse transcriptase and protease sequence database.
Nucleic Acids Res. 2003 Jan 1;31(1):298-303. doi: 10.1093/nar/gkg100.
9
Predicting HIV drug resistance with neural networks.
Bioinformatics. 2003 Jan;19(1):98-107. doi: 10.1093/bioinformatics/19.1.98.
10
Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype.
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8271-6. doi: 10.1073/pnas.112177799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验