Suppr超能文献

Geno2pheno:从HIV-1基因型估计表型耐药性。

Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes.

作者信息

Beerenwinkel Niko, Däumer Martin, Oette Mark, Korn Klaus, Hoffmann Daniel, Kaiser Rolf, Lengauer Thomas, Selbig Joachim, Walter Hauke

机构信息

Max Planck Institute for Informatics, Stuhlsatzenhausweg 85, D-66115 Saarbrücken, Germany.

出版信息

Nucleic Acids Res. 2003 Jul 1;31(13):3850-5. doi: 10.1093/nar/gkg575.

Abstract

Therapeutic success of anti-HIV therapies is limited by the development of drug resistant viruses. These genetic variants display complex mutational patterns in their pol gene, which codes for protease and reverse transcriptase, the molecular targets of current antiretroviral therapy. Genotypic resistance testing depends on the ability to interpret such sequence data, whereas phenotypic resistance testing directly measures relative in vitro susceptibility to a drug. From a set of 650 matched genotype-phenotype pairs we construct regression models for the prediction of phenotypic drug resistance from genotypes. Since the range of resistance factors varies considerably between different drugs, two scoring functions are derived from different sets of predicted phenotypes. Firstly, we compare predicted values to those of samples derived from 178 treatment-naive patients and report the relative deviance. Secondly, estimation of the probability density of 2000 predicted phenotypes gives rise to an intrinsic definition of a susceptible and a resistant subpopulation. Thus, for a predicted phenotype, we calculate the probability of membership in the resistant subpopulation. Both scores provide standardized measures of resistance that can be calculated from the genotype and are comparable between drugs. The geno2pheno system makes these genotype interpretations available via the Internet (http://www.genafor.org/).

摘要

抗HIV疗法的治疗成功受到耐药病毒产生的限制。这些基因变体在其编码蛋白酶和逆转录酶的pol基因中呈现出复杂的突变模式,而蛋白酶和逆转录酶是当前抗逆转录病毒疗法的分子靶点。基因型耐药性检测依赖于解读此类序列数据的能力,而表型耐药性检测则直接测量体外对药物的相对敏感性。我们从650对匹配的基因型-表型对中构建回归模型,用于从基因型预测表型耐药性。由于不同药物之间耐药因子的范围差异很大,因此从不同的预测表型集中导出了两个评分函数。首先,我们将预测值与来自178例初治患者的样本值进行比较,并报告相对偏差。其次,对2000个预测表型的概率密度进行估计,从而得出敏感亚群和耐药亚群的内在定义。因此,对于一个预测表型,我们计算其属于耐药亚群的概率。这两个评分都提供了可从基因型计算得出的标准化耐药性测量方法,并且在不同药物之间具有可比性。geno2pheno系统通过互联网(http://www.genafor.org/)提供这些基因型解读。

相似文献

引用本文的文献

本文引用的文献

3
Methods for optimizing antiviral combination therapies.优化抗病毒联合疗法的方法。
Bioinformatics. 2003;19 Suppl 1:i16-25. doi: 10.1093/bioinformatics/btg1001.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验