Suppr超能文献

用于暴发检测方法统计评估的开源环境。

An open source environment for the statistical evaluation of outbreak detection methods.

作者信息

Lumley Thomas, Sebestyen Krisztian, Lober William B, Painter Ian

机构信息

Department of Biostatistics, Seattle, Washington, USA.

出版信息

AMIA Annu Symp Proc. 2005;2005:1037.

Abstract

We describe the design and initial steps to implementation of a computational framework for evaluating outbreak detection methods. The framework will include components for combining simulated and historical data to create artificial outbreaks and components that implement various outbreak detection algorithms. The first algorithms to be implemented are the three Cumulative Sums (cusum) methods described in the CDC Early Aberration Reporting System.

摘要

我们描述了一个用于评估疫情检测方法的计算框架的设计及实施的初步步骤。该框架将包括用于组合模拟数据和历史数据以创建人工疫情的组件,以及实施各种疫情检测算法的组件。首先要实施的算法是美国疾病控制与预防中心早期异常报告系统中描述的三种累积和(cusum)方法。

引用本文的文献

1
Factors influencing adherence to treatment in older adults with hypertension.
Clin Interv Aging. 2018 Nov 28;13:2425-2441. doi: 10.2147/CIA.S182881. eCollection 2018.
2
Comparing early outbreak detection algorithms based on their optimized parameter values.
J Biomed Inform. 2010 Feb;43(1):97-103. doi: 10.1016/j.jbi.2009.08.003. Epub 2009 Aug 13.

本文引用的文献

1
The bioterrorism preparedness and response Early Aberration Reporting System (EARS).
J Urban Health. 2003 Jun;80(2 Suppl 1):i89-96. doi: 10.1007/pl00022319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验