Abe Takato, Takahashi Shinichi, Suzuki Norihiro
Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
Brain Res. 2006 Jul 26;1101(1):5-11. doi: 10.1016/j.brainres.2006.05.009. Epub 2006 Jun 15.
The metabolic properties of astroglia differentiated from neurospheres have not been fully assessed. In this study, the glycolytic and oxidative metabolism of glucose in astroglia differentiated from rat tertiary neurospheres (astroglia(NS)) was compared with that in astroglia prepared from the striata of embryonic day 16 rats (astroglia(ST)). In addition to the basal condition, we also investigated energy metabolism under Na+,K+-ATPase activation. Furthermore, the effects of glucose concentration in the culture medium were assessed. No significant differences in 2-deoxy-D-[1-(14)C]glucose phosphorylation were observed between astroglia(NS) and astrogliaST. The rates of L-[U-14C]lactate ([14C]lactate) and D-[U-14C]glucose ([14C]glucose) oxidation were 5.74+/-0.82 and 2.83+/-0.4 pmol/60 min/microg protein, respectively, in astrogliaNS grown in low glucose (2 mM) and 3.01+/-1.03 and 1.77+/-0.23 pmol/60 min/microg protein, respectively, in astrogliaNS grown in high glucose (22 mM). Neither the [14C]lactate nor the [14C]glucose oxidation rates in astrogliaNS were significantly different from those in astrogliaST. D-aspartate (500 microM) significantly increased the [14C]lactate and [14C]glucose oxidation rates by 127% and 62%, respectively, in astrogliaNS grown in low glucose and by 217% and 115%, respectively, in astroglia(NS) grown in high glucose. D-aspartate also increased the oxidation of [14C]lactate and [14C]glucose to 236% and 147% of the control values, respectively, in astrogliaST grown in low glucose and to 174% and 144%, respectively, in astrogliaST grown in high glucose. Rat astroglia differentiated from neurospheres might possess an equivalent capacity for utilizing energy substrates under both basal and activated conditions to that of astroglia prepared from striatum.
从神经球分化而来的星形胶质细胞的代谢特性尚未得到充分评估。在本研究中,将从大鼠三级神经球分化而来的星形胶质细胞(星形胶质细胞(NS))中的葡萄糖糖酵解和氧化代谢与从胚胎第16天大鼠纹状体制备的星形胶质细胞(星形胶质细胞(ST))中的进行了比较。除基础条件外,我们还研究了Na +,K + -ATP酶激活状态下的能量代谢。此外,评估了培养基中葡萄糖浓度的影响。在星形胶质细胞(NS)和星形胶质细胞(ST)之间未观察到2-脱氧-D-[1-(14)C]葡萄糖磷酸化的显著差异。在低葡萄糖(2 mM)中生长的星形胶质细胞(NS)中,L-[U-14C]乳酸([14C]乳酸)和D-[U-14C]葡萄糖([14C]葡萄糖)的氧化速率分别为5.74±0.82和2.83±0.4 pmol/60分钟/微克蛋白质,在高葡萄糖(22 mM)中生长的星形胶质细胞(NS)中分别为3.01±1.03和1.77±0.23 pmol/60分钟/微克蛋白质。星形胶质细胞(NS)中的[14C]乳酸和[14C]葡萄糖氧化速率与星形胶质细胞(ST)中的均无显著差异。D-天冬氨酸(500 microM)使低葡萄糖中生长的星形胶质细胞(NS)中的[14C]乳酸和[14C]葡萄糖氧化速率分别显著增加127%和62%,在高葡萄糖中生长的星形胶质细胞(NS)中分别增加217%和115%。D-天冬氨酸还使低葡萄糖中生长的星形胶质细胞(ST)中的[14C]乳酸和[14C]葡萄糖氧化分别增加至对照值的236%和147%,在高葡萄糖中生长的星形胶质细胞(ST)中分别增加至174%和144%。从神经球分化而来的大鼠星形胶质细胞在基础和激活条件下利用能量底物的能力可能与从纹状体制备的星形胶质细胞相当。