Lebart Ludovic
CNRS and GET-ENST. 46 rue Barrault, 75013, Paris, France.
Neural Netw. 2006 Jul-Aug;19(6-7):847-54. doi: 10.1016/j.neunet.2006.05.004. Epub 2006 Jun 13.
Contiguity analysis is a straightforward generalization of linear discriminant analysis in which the partition of elements is replaced by a more general graph structure. Applied to the graph induced by a Self Organizing Map (SOM), contiguity analysis provides a set of linear projectors leading to a planar representation as close as possible to the SOM. As expected, such projectors may only concern local parts of the SOMs. They allow us to visualize the shapes of the clusters (convex hulls of the projections of the elements belonging to a cluster) and the pattern of the elements within each cluster. In some contexts, it is possible to project the bootstrap replicates of the elements, and therefore to produce confidence areas for elements via a standard partial bootstrap procedure.
邻接分析是线性判别分析的直接推广,其中元素的划分被更一般的图结构所取代。应用于自组织映射(SOM)诱导的图时,邻接分析提供了一组线性投影器,可得到尽可能接近SOM的平面表示。不出所料,此类投影器可能仅涉及SOM的局部部分。它们使我们能够可视化聚类的形状(属于一个聚类的元素投影的凸包)以及每个聚类内元素的模式。在某些情况下,可以对元素的自助重抽样进行投影,从而通过标准的部分自助程序为元素生成置信区域。