Attard Phil
School of Chemistry F11, University of Sydney, New South Wales 2006, Australia.
J Chem Phys. 2006 Jun 14;124(22):224103. doi: 10.1063/1.2203069.
The phase space probability density for steady heat flow is given. This generalizes the Boltzmann distribution to a nonequilibrium system. The expression includes the nonequilibrium partition function, which is a generating function for statistical averages and which can be related to a nonequilibrium free energy. The probability density is shown to give the Green-Kubo formula in the linear regime. A Monte Carlo algorithm is developed based upon a Metropolis sampling of the probability distribution using an umbrella weight. The nonequilibrium simulation scheme is shown to be much more efficient for the thermal conductivity of a Lennard-Jones fluid than the Green-Kubo equilibrium fluctuation method. The theory for heat flow is generalized to give the generic nonequilibrium probability densities for hydrodynamic transport, for time-dependent mechanical work, and for nonequilibrium quantum statistical mechanics.
给出了稳态热流的相空间概率密度。这将玻尔兹曼分布推广到了非平衡系统。该表达式包含非平衡配分函数,它是统计平均值的生成函数,并且可以与非平衡自由能相关联。概率密度在线性区域给出了格林 - 久保公式。基于使用伞形权重对概率分布进行 metropolis 抽样开发了一种蒙特卡罗算法。对于 Lennard-Jones 流体的热导率,非平衡模拟方案比格林 - 久保平衡涨落方法显示出更高的效率。热流理论被推广以给出流体动力学输运、随时间变化的机械功以及非平衡量子统计力学的一般非平衡概率密度。