Suppr超能文献

非平衡统计力学理论。

Theory for non-equilibrium statistical mechanics.

作者信息

Attard Phil

机构信息

School of Chemistry F11, University of Sydney, NSW 2006, Australia.

出版信息

Phys Chem Chem Phys. 2006 Aug 21;8(31):3585-611. doi: 10.1039/b604284h. Epub 2006 Jul 7.

Abstract

This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life.

摘要

本文综述了非平衡统计力学的一种新理论。该理论给出了玻尔兹曼概率分布的非平衡类似物,以及熵向动态状态的推广。结果表明,这种所谓的第二熵在稳态下达到最大值,这与传统熵的产生率不同,传统熵的产生率并非极值。讨论了新理论与昂萨格回归假设、普里戈金最小熵产生定理、朗之万方程、格林 - 久保公式、川崎分布以及非平衡涨落和功定理之间的关系。针对沿外加温度梯度的稳态热流情况,对该理论进行了全面详细的阐述。总结了基于稳态概率密度的蒙特卡罗算法,并且展示了 Lennard-Jones 流体热导率的结果与已知值相符。还讨论了对非平衡机械功以及非平衡量子统计力学的推广。作为新理论的示例,简要探讨了两个一般应用:热力学第二定律的非平衡版本以及生命的起源与演化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验