Dentener F, Stevenson D, Ellingsen K, Van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen I S A, Josse B, Lawrence M, Krol M, Lamarque J F, Montanaro V, Müller J F, Peuch V H, Pitari G, Pyle J, Rast S, Rodriguez I, Sanderson M, Savage N H, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G
Joint Research Centre, Institute for Environment and Sustainability, via E. Fermi 1, 1-21020, Ispra, Italy.
Environ Sci Technol. 2006 Jun 1;40(11):3586-94. doi: 10.1021/es0523845.
Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, while the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models and show a reasonable agreement with surface ozone, wet deposition, and NO2 satellite observations. Large parts of the world are currently exposed to high ozone concentrations and high deposition of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 +/- 1.2 ppb (CLE) and 4.3 +/- 2.2 ppb (A2), using the ensemble mean model results and associated +/-1 sigma standard deviations. Only the progressive MFR scenario will reduce ozone, by -2.3 +/- 1.1 ppb. Climate change is expected to modify surface ozone by -0.8 +/- 0.6 ppb, with larger decreases over sea than over land. Radiative forcing by ozone increases by 63 +/- 15 and 155 +/- 37 mW m(-2) for CLE and A2, respectively, and decreases by -45 +/- 15 mW m(-2) for MFR. We compute that at present 10.1% of the global natural terrestrial ecosystems are exposed to nitrogen deposition above a critical load of 1 g N m(-2) yr(-1). These percentages increase by 2030 to 15.8% (CLE), 10.5% (MFR), and 25% (A2). This study shows the importance of enforcing current worldwide air quality legislation and the major benefits of going further. Nonattainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.
空气质量、生态系统的氮沉降暴露以及气候变化是紧密相连的问题:我们使用26个最先进的全球大气化学模型和三种不同的排放情景,评估了2000年至2030年全球大气环境的变化。第一种(CLE)情景反映了全球现行空气质量法规的实施情况,而第二种(MFR)则代表了一种更乐观的情况,即应用所有当前可行的技术以实现最大程度的减排。我们将这些情景与更悲观的IPCC SRES A2情景进行对比。2000年的集合模拟在各模型之间是一致的,并且与地表臭氧、湿沉降和二氧化氮卫星观测结果显示出合理的一致性。目前世界上大部分地区都面临高浓度臭氧以及向生态系统的高氮沉降。根据集合平均模型结果及相关的±1西格玛标准差,到2030年,全球地表臭氧预计将分别增加1.5±1.2 ppb(CLE)和4.3±2.2 ppb(A2)。只有渐进的MFR情景会使臭氧减少,减少量为-2.3±1.1 ppb。预计气候变化将使地表臭氧减少-0.8±0.6 ppb,在海洋上的减少幅度大于陆地。对于CLE和A2情景,臭氧的辐射强迫分别增加63±15和155±37 mW m(-2),而对于MFR情景则减少-45±15 mW m(-2)。我们计算得出,目前全球10.1%的自然陆地生态系统面临的氮沉降超过了1 g N m(-2) yr(-1)的临界负荷。到2030年,这些百分比将分别增至15.8%(CLE)、10.5%(MFR)和25%(A2)。这项研究表明了执行全球现行空气质量法规的重要性以及进一步行动的重大益处。未能实现这些空气质量政策目标,如SRES - A2情景所体现的那样,将进一步恶化全球大气环境。