Suppr超能文献

Relationship between regulation of morphine-induced EEG effects and changes in naloxone sensitivity.

作者信息

Paquette N C, Young G A

机构信息

Department of Pharmacology and Toxicology, University of Maryland, Baltimore 21201.

出版信息

Eur J Pharmacol. 1991 Apr 10;196(1):61-7. doi: 10.1016/0014-2999(91)90409-j.

Abstract

The present data indicate that pretreatment with i.c.v. injection of dynorphin, morphine and dynorphin/morphine resulted in quantitative and qualitative changes in EEG power spectra in rats given i.c.v. morphine 24 h later. Correlated changes in sensitivity to antagonism of these EEG effects by naloxone were also found. Rats were implanted with cortical EEG electrodes and i.c.v. and i.v. cannulas. I.c.v. injections of morphine (20 micrograms/rat) produced high-voltage, slow-wave EEG bursts (1-10 Hz) associated with behavioral stupor which lasted about 2 h. Injections of i.c.v. morphine in rats pretreated with i.c.v. dynorphin (20 micrograms/rat), morphine (20 micrograms/rat) or dynorphin/morphine 24 h earlier, produced quantitative increases in absolute EEG spectral power. Injections of i.c.v. morphine in rats pretreated with i.c.v. dynorphin/morphine 24 h earlier, also produced qualitatively different EEG power spectra with a predominant peak in the 4-6 Hz band, similar to the EEG power spectra seen after acute administration of kappa opioids. After 20 min of morphine-induced high voltage EEG bursts, i.v. naloxone was given in sequential doses (0.0025, 0.0125, 0.025, 0.050 mg/kg) every 3 min until the EEG bursts were suppressed for 20 min. Relatively low doses of naloxone suppressed morphine-induced EEG bursts in rats that received i.c.v. H2O/H2O pretreatment. Slightly higher, but significant, doses of naloxone suppressed morphine-induced EEG bursts in rats that received i.c.v. H2O/morphine or dynorphin/H2O pretreatment. Moreover, a 10-fold increase in naloxone dose was needed to suppress EEG bursts in rats that received dynorphin/morphine pretreatment.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验