Suppr超能文献

Modulation of morphine-induced EEG and behavioral effects by dynorphin A-(1-13) in non-tolerant and morphine-tolerant rats.

作者信息

Hong O, Young G A, Khazan N

机构信息

Department of Pharmacology and Toxicology, University of Maryland School of Pharmacy, Baltimore 21201.

出版信息

Neuropharmacology. 1988 Aug;27(8):807-12. doi: 10.1016/0028-3908(88)90095-0.

Abstract

The purpose of the present study was to assess effects of dynorphin A-(1-13) on morphine-induced changes in electroencephalographic (EEG) spectral power and morphine-induced suppression of slow-wave sleep in non-tolerant and morphine-tolerant rats. Adult female Sprague-Dawley rats were implanted with chronic cortical EEG electrodes, electromyographic electrodes in the temporalis muscle and with intracerebroventricular (i.c.v.) cannulae and, in some cases, additional intravenous (i.v.) cannulae. Injections of morphine (i.c.v., 20 micrograms/rat) produced a biphasic EEG and behavioral response, composed of 2-3 hr of slow-wave bursts and increased spectral power (0-4 Hz) in the EEG, associated with behavioral stupor, followed by 2-3 hr of EEG and behavioral arousal. Dynorphin (i.c.v., 20 micrograms/rat), administered 10 min before injections of morphine in non-tolerant rats, antagonized morphine-induced increases in spectral power of the EEG and morphine-induced suppression of slow-wave sleep. In addition, EEG power spectra obtained after intraventricular administration of morphine from rats, treated with dynorphin and morphine intraventricularly 24 hr earlier, were qualitatively similar to those previously found after acute administration of kappa opioid agonists. In morphine-tolerant rats, pretreatment with dynorphin given intraventricularly, 10 min prior to intraventricular administration of morphine, restored morphine-induced increases in EEG spectral power and suppression of slow-wave sleep. The results suggest that dynorphin may modulate the characteristics of opioid receptors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验