Suppr超能文献

用于具有可忽略和不可忽略缺失的纵向二元数据的边缘化转换模型。

Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out.

作者信息

Kurland Brenda F, Heagerty Patrick J

机构信息

National Alzheimer's Coordinating Center, University of Washington, Department of Epidemiology, 4311 11th Ave NE #300, Seattle, WA 98105, USA.

出版信息

Stat Med. 2004 Sep 15;23(17):2673-95. doi: 10.1002/sim.1850.

Abstract

We extend the marginalized transition model of Heagerty to accommodate non-ignorable monotone drop-out. Using a selection model, weakly identified drop-out parameters are held constant and their effects evaluated through sensitivity analysis. For data missing at random (MAR), efficiency of inverse probability of censoring weighted generalized estimating equations (IPCW-GEE) is as low as 40 per cent compared to a likelihood-based marginalized transition model (MTM) with comparable modelling burden. MTM and IPCW-GEE regression parameters both display misspecification bias for MAR and non-ignorable missing data, and both reduce bias noticeably by improving model fit.

摘要

我们扩展了希格蒂的边际化转移模型,以适应不可忽略的单调缺失。使用选择模型,弱识别的缺失参数保持不变,并通过敏感性分析评估其影响。对于随机缺失(MAR)数据,与具有可比建模负担的基于似然的边际化转移模型(MTM)相比,删失加权广义估计方程(IPCW-GEE)的效率低至40%。MTM和IPCW-GEE回归参数对于MAR和不可忽略的缺失数据均显示出模型误设偏差,并且两者都通过改善模型拟合显著降低了偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验