Suppr超能文献

无需受试者训练即可实现快速脑机接口的脑电图(EEG)和皮质脑电图(ECoG)信号分类:非瘫痪和完全瘫痪受试者的比较

Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects.

作者信息

Hill N Jeremy, Lal Thomas Navin, Schröder Michael, Hinterberger Thilo, Wilhelm Barbara, Nijboer Femke, Mochty Ursula, Widman Guido, Elger Christian, Schölkopf Bernhard, Kübler Andrea, Birbaumer Niels

机构信息

Max Planck Institute for Biological Cybernetics, 72012 Tübingen, Germany.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):183-6. doi: 10.1109/TNSRE.2006.875548.

Abstract

We summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of electroencephalogram (EEG) or electrocorticogram (ECoG) signals for each subject. We apply the same experimental and analytical methods to 11 nonparalysed subjects (eight EEG, three ECoG), and to five paralyzed subjects (four EEG, one ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the nonparalyzed subjects, it proved impossible to classify the signals obtained from the paralyzed patients by the same methods. This highlights the fact that though certain BCI paradigms may work well with healthy subjects, this does not necessarily indicate success with the target user group. We outline possible reasons for this failure to transfer.

摘要

我们总结了一系列相关研究的结果,这些研究旨在为每个受试者使用单次脑电图(EEG)或皮质电图(ECoG)信号记录来开发基于运动想象的脑机接口。我们将相同的实验和分析方法应用于11名非瘫痪受试者(8名EEG,3名ECoG)以及5名已经有一段时间无法交流的瘫痪受试者(4名EEG,1名ECoG)。虽然从大多数非瘫痪受试者中快速获得可分类信号相对容易,但事实证明,用同样的方法无法对从瘫痪患者获得的信号进行分类。这突出了这样一个事实,即尽管某些脑机接口范式可能在健康受试者中效果良好,但这并不一定意味着在目标用户群体中也会成功。我们概述了这种转移失败的可能原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验