Suppr超能文献

人工神经网络:一种用于姿势障碍的新型诊断性姿势描记工具。

Artificial neural network: a new diagnostic posturographic tool for disorders of stance.

作者信息

Krafczyk Siegbert, Tietze Simon, Swoboda Walter, Valkovic Peter, Brandt Thomas

机构信息

Department of Neurology, University of Munich, Marchioninistrasse 15, D-81377 Munich, Germany.

出版信息

Clin Neurophysiol. 2006 Aug;117(8):1692-8. doi: 10.1016/j.clinph.2006.04.022. Epub 2006 Jun 22.

Abstract

OBJECTIVE

To determine the accuracy of diagnoses made with artificial neural network techniques (ANNW) that identify postural sway patterns typical for balance disorders.

METHODS

Body sway was measured by means of posturography during 10 test conditions of increasing difficulty. From a database of 676 subjects 60 training cases (TCs) and 60 validation cases (VCs) were selected in which the following diagnoses had been established clinically: normal subject (NS), postural phobic vertigo (PPV), anterior lobe cerebellar atrophy (CA), primary orthostatic tremor (OT), and acute unilateral vestibular neuritis (VN). A standard 3-layer feed-forward ANNW, using the backpropagation algorithm, was trained with TCs, validated with VCs, and its accuracy tested on 5 new cases.

RESULTS

ANNW differentiated the established diagnoses with an overall sensitivity and specificity of 0.93. Sensitivity and specificity were 1 for NS and OT; for PPV, 0.87 and 0.96; for CA, 1 and 0.98; and for VN, 0.8 and 0.98, respectively. New subjects were identified with ANNW output variables of the true diagnoses between 0.73 and 1.

CONCLUSIONS

ANNW differentiates postural sway patterns of several distinct clinical balance disorders with high sensitivity and specificity. Once designed and tested ANNW could be considered a black box, which each examiner can apply to predict a specific diagnosis even without a clinical examination.

SIGNIFICANCE

A promising diagnostic tool for disorders of upright stance in selected neurological disorders.

摘要

目的

确定使用人工神经网络技术(ANNW)进行诊断的准确性,该技术可识别平衡障碍典型的姿势摇摆模式。

方法

在10种难度逐渐增加的测试条件下,通过姿势描记法测量身体摇摆。从676名受试者的数据库中,选择了60例训练病例(TCs)和60例验证病例(VCs),这些病例在临床上已确立了以下诊断:正常受试者(NS)、姿势性恐惧性眩晕(PPV)、小脑前叶萎缩(CA)、原发性直立性震颤(OT)和急性单侧前庭神经炎(VN)。使用反向传播算法的标准三层前馈ANNW用TCs进行训练,用VCs进行验证,并在5例新病例上测试其准确性。

结果

ANNW区分已确立的诊断,总体敏感性和特异性为0.93。NS和OT的敏感性和特异性均为1;PPV的敏感性和特异性分别为0.87和0.96;CA的敏感性和特异性分别为1和0.98;VN的敏感性和特异性分别为0.8和0.98。通过ANNW输出变量识别新受试者,其真实诊断在0.73至1之间。

结论

ANNW以高敏感性和特异性区分几种不同临床平衡障碍的姿势摇摆模式。一旦设计和测试完成,ANNW可被视为一个黑箱,每个检查者甚至无需临床检查即可应用它来预测特定诊断。

意义

一种用于选定神经系统疾病中直立姿势障碍的有前景的诊断工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验