Muday Gloria K, Brady Shari R, Argueso Cristiana, Deruère Jean, Kieber Joseph J, DeLong Alison
Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA.
Plant Physiol. 2006 Aug;141(4):1617-29. doi: 10.1104/pp.106.083212. Epub 2006 Jun 23.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.
拟南芥(Arabidopsis thaliana)的根卷曲于萘基邻苯二甲酸1(rcn1)突变体中,其生长素运输、向重力性和乙烯反应发生了改变,这为分析乙烯和生长素在控制幼苗生长过程中的相互作用提供了契机。先前研究表明,rcn1幼苗的根在生长素运输、生长和向重力性方面发生了改变,而rcn1下胚轴伸长表现出增强的乙烯反应。我们对rcn1下胚轴的生长素运输和向重力性表型进行了表征,并探讨了生长素和乙烯在控制这些表型中的作用。与根中情况一样,黄化的rcn1下胚轴中生长素运输增加。在黄化的rcn1下胚轴中,尽管整体伸长减少,但下胚轴重力反应加快。黄化而非光照生长的rcn1幼苗也过量产生乙烯,赋予乙烯不敏感的突变可使rcn1下胚轴恢复正常伸长。在野生型和rcn1幼苗的黄化下胚轴中,用乙烯前体1-氨基环丙烷羧酸处理对生长素运输没有影响。令人惊讶的是,乙烯不敏感2-1(ein2-1)和ein2-5突变显著降低了下胚轴的向重力性弯曲。然而,乙烯抗性1-3(etr1-3)突变对下胚轴重力反应没有显著影响。此外,etr1和ein2突变均未消除rcn1下胚轴中观察到的加速向重力性,这表明野生型重力反应和rcn1中增强的重力反应都不需要完整的乙烯信号通路。因此,我们得出结论,RCN1蛋白通过对黄化幼苗中乙烯合成的负调控影响下胚轴的整体伸长,并且RCN1和EIN2通过独立途径调节下胚轴向重力性和乙烯反应。