Suppr超能文献

微流控通道中的表面导向边界流。

Surface-directed boundary flow in microfluidic channels.

作者信息

Huang Tom T, Taylor David G, Lim Kwan Seop, Sedlak Miroslav, Bashir Rashid, Mosier Nathan S, Ladisch Michael R

机构信息

Laboratory of Renewable Resources Engineering, School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Langmuir. 2006 Jul 4;22(14):6429-37. doi: 10.1021/la053465h.

Abstract

Channel geometry combined with surface chemistry enables a stable liquid boundary flow to be attained along the surfaces of a 12 microm diameter hydrophilic glass fiber in a closed semi-elliptical channel. Surface free energies and triangular corners formed by PDMS/glass fiber or OTS/glass fiber surfaces are shown to be responsible for the experimentally observed wetting phenomena and formation of liquid boundary layers that are 20-50 microm wide and 12 microm high. Viewing this stream through a 20 microm slit results in a virtual optical window with a 5 pL liquid volume suitable for cell counting and pathogen detection. The geometry that leads to the boundary layer is a closed channel that forms triangular corners where glass fiber and the OTS coated glass slide or PDMS touch. The contact angles and surfaces direct positioning of the fluid next to the fiber. Preferential wetting of corner regions initiates the boundary flow, while the elliptical cross-section of the channel stabilizes the microfluidic flow. The Young-Laplace equation, solved using fluid dynamic simulation software, shows contact angles that exceed 105 degrees will direct the aqueous fluid to a boundary layer next to a hydrophilic fiber with a contact angle of 5 degrees. We believe this is the first time that an explanation has been offered for the case of a boundary layer formation in a closed channel directed by a triangular geometry with two hydrophobic wetting edges adjacent to a hydrophilic surface.

摘要

通道几何形状与表面化学相结合,能够在封闭的半椭圆形通道中,沿着直径为12微米的亲水性玻璃纤维表面实现稳定的液体边界流。实验观察到的润湿现象以及20 - 50微米宽、12微米高的液体边界层的形成,被证明是由PDMS/玻璃纤维或OTS/玻璃纤维表面形成的表面自由能和三角形角所致。通过一个20微米的狭缝观察该液流,会形成一个虚拟光学窗口,其液体体积为5皮升,适用于细胞计数和病原体检测。导致边界层形成的几何结构是一个封闭通道,该通道在玻璃纤维与涂有OTS的玻璃载玻片或PDMS接触处形成三角形角。接触角和表面决定了纤维旁边流体的直接定位。角区域的优先润湿引发边界流,而通道的椭圆形横截面使微流体流动得以稳定。使用流体动力学模拟软件求解的杨 - 拉普拉斯方程表明,接触角超过105度时,会将水性流体引导至与接触角为5度的亲水性纤维相邻的边界层。我们认为,这是首次针对由具有两个与亲水性表面相邻的疏水性润湿边缘的三角形几何结构引导的封闭通道中边界层形成的情况给出解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验