Sorensen Michael E, DeWeerth Stephen P
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Biol Cybern. 2006 Aug;95(2):185-92. doi: 10.1007/s00422-006-0076-6. Epub 2006 Jun 21.
Although conductance-based neural models provide a realistic depiction of neuronal activity, their complexity often limits effective implementation and analysis. Neuronal model reduction methods provide a means to reduce model complexity while retaining the original model's realism and relevance. Such methods, however, typically include ad hoc components that require that the modeler already be intimately familiar with the dynamics of the original model. We present an automated, algorithmic method for reducing conductance-based neuron models using the method of equivalent potentials (Kelper et al., Biol Cybern 66(5):381-387, 1992) Our results demonstrate that this algorithm is able to reduce the complexity of the original model with minimal performance loss, and requires minimal prior knowledge of the model's dynamics. Furthermore, by utilizing a cost function based on the contribution of each state variable to the total conductance of the model, the performance of the algorithm can be significantly improved.
虽然基于电导的神经模型能够逼真地描绘神经元活动,但其复杂性常常限制了有效实施和分析。神经元模型简化方法提供了一种在保留原始模型真实性和相关性的同时降低模型复杂性的途径。然而,此类方法通常包含一些特殊组件,这要求建模者必须对原始模型的动态特性了如指掌。我们提出了一种使用等效电位方法(Kelper等人,《生物控制论》66(5):381 - 387,1992)简化基于电导的神经元模型的自动化算法方法。我们的结果表明,该算法能够以最小的性能损失降低原始模型的复杂性,并且所需的模型动态特性先验知识极少。此外,通过利用基于每个状态变量对模型总电导贡献的成本函数,算法性能可得到显著提升。