Suppr超能文献

Hydroxyl radical mediated demethylenation of (methylenedioxy)phenyl compounds.

作者信息

Kumagai Y, Lin L Y, Schmitz D A, Cho A K

机构信息

Department of Pharmacology, UCLA School of Medicine 90024-1735.

出版信息

Chem Res Toxicol. 1991 May-Jun;4(3):330-4. doi: 10.1021/tx00021a012.

Abstract

The oxidative demethylenation reactions of (methylendioxy)phenyl compounds (MDPs), (methylenedioxy)benzene (MDB), (methylenedioxy)amphetamine (MDA), and (methylenedioxy)methamphetamine (MDMA), were evaluated by using two hydroxyl radical generating systems, the autoxidation of ascorbate in the presence of iron-EDTA and the iron-catalyzed Haber-Weiss reaction conducted by xanthine/xanthine oxidase with iron-EDTA. Reaction products generated when MDB, MDA, and MDMA were incubated with the ascorbate or xanthine oxidase system were catechol, dihydroxyamphetamine (DHA), and dihydroxymethamphetamine (DHMA), respectively. The reaction required the presence of either ascorbic acid or xanthine oxidase. Levels of each catechol increased in proportion to ferric ion concentration and were suppressed by desferrioxamine B methanesulfonate (desferal). Catalase (CAT) inhibited the oxidation by the ascorbate system whereas superoxide dismutase (SOD) had little effect. The addition of hydrogen peroxide to the reaction mixture stimulated the oxidation, but the reaction was not initiated by hydrogen peroxide alone, suggesting that hydrogen peroxide acts as a precursor of hydroxyl radical. SOD and CAT suppressed the demethylenation reactions in the xanthine oxidase system. Hydroxyl radical scavenging agents such as ethanol, benzoate, DMSO, and thiourea effectively inhibited the oxidation by both systems. Urea, which has little effect on hydroxyl radical, was without any effect. These results indicated that hydroxyl radical can effect the cleavage of methylenedioxy group on MDPs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验