Yang Lijiang, Tan Chun-Hu, Hsieh Meng-Juei, Wang Junmei, Duan Yong, Cieplak Piotr, Caldwell James, Kollman Peter A, Luo Ray
Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
J Phys Chem B. 2006 Jul 6;110(26):13166-76. doi: 10.1021/jp060163v.
We have developed a new-generation Amber united-atom force field for simulations involving highly demanding conformational sampling such as protein folding and protein-protein binding. In the new united-atom force field, all hydrogens on aliphatic carbons in all amino acids are united with carbons except those on Calpha. Our choice of explicit representation of all protein backbone atoms aims at minimizing perturbation to protein backbone conformational distributions and to simplify development of backbone torsion terms. Tests with dipeptides and solvated proteins show that our goal is achieved quite successfully. The new united-atom force field uses the same new RESP charging scheme based on B3LYP/cc-pVTZ//HF/6-31g** quantum mechanical calculations in the PCM continuum solvent as that in the Duan et al. force field. van der Waals parameters are empirically refitted starting from published values with respect to experimental solvation free energies of amino acid side-chain analogues. The suitability of mixing new point charges and van der Waals parameters with existing Amber covalent terms is tested on alanine dipeptide and is found to be reasonable. Parameters for all new torsion terms are refitted based on the new point charges and the van der Waals parameters. Molecular dynamics simulations of three small globular proteins in the explicit TIP3P solvent are performed to test the overall stability and accuracy of the new united-atom force field. Good agreements between the united-atom force field and the Duan et al. all-atom force field for both backbone and side-chain conformations are observed. In addition, the per-step efficiency of the new united-atom force field is demonstrated for simulations in the implicit generalized Born solvent. A speedup around two is observed over the Duan et al. all-atom force field for the three tested small proteins. Finally, the efficiency gain of the new united-atom force field in conformational sampling is further demonstrated with a well-known toy protein folding system, an 18 residue polyalanine in distance-dependent dielectric. The new united-atom force field is at least a factor of 200 more efficient than the Duan et al. all-atom force field for ab initio folding of the tested peptide.
我们开发了一种新一代的琥珀色联合原子力场,用于涉及高要求构象采样的模拟,如蛋白质折叠和蛋白质-蛋白质结合。在新的联合原子力场中,所有氨基酸脂肪族碳上的氢原子(除了α-碳原子上的氢原子)都与碳原子合并。我们对所有蛋白质主链原子进行显式表示的选择旨在最小化对蛋白质主链构象分布的扰动,并简化主链扭转项的开发。对二肽和溶剂化蛋白质的测试表明,我们的目标相当成功地实现了。新的联合原子力场使用与段等人的力场中相同的基于B3LYP/cc-pVTZ//HF/6-31g**量子力学计算并在PCM连续介质溶剂中的新RESP电荷方案。范德华参数从已发表的值开始,根据氨基酸侧链类似物的实验溶剂化自由能进行经验性重新拟合。在丙氨酸二肽上测试了将新的点电荷和范德华参数与现有的琥珀色共价项混合的适用性,发现是合理的。所有新扭转项的参数都根据新的点电荷和范德华参数进行重新拟合。在显式TIP3P溶剂中对三种小的球状蛋白质进行分子动力学模拟,以测试新联合原子力场的整体稳定性和准确性。观察到联合原子力场与段等人的全原子力场在主链和侧链构象方面都有很好的一致性。此外,在隐式广义玻恩溶剂中的模拟中证明了新联合原子力场的每步效率。对于三种测试的小蛋白质,观察到比段等人的全原子力场加速约两倍。最后,用一个著名的玩具蛋白质折叠系统,即距离依赖介电常数下的18个残基聚丙氨酸,进一步证明了新联合原子力场在构象采样中的效率提升。对于测试肽的从头折叠,新联合原子力场比段等人的全原子力场至少高效200倍。