Suppr超能文献

用于蛋白质的CHARMM波动电荷力场:II. 使用非加和静电模型通过分子动力学模拟得到的蛋白质/溶剂性质

CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.

作者信息

Patel Sandeep, Mackerell Alexander D, Brooks Charles L

机构信息

Department of Molecular Biology (TPC-6), The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla California 92037, USA.

出版信息

J Comput Chem. 2004 Sep;25(12):1504-14. doi: 10.1002/jcc.20077.

Abstract

A fluctuating charge (FQ) force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P-FQ potential. The proteins include 1FSV, 1ENH, 1PGB, 1VII, 1H8K, and 1CRN, representing both helical and beta-sheet secondary structural elements. Constant pressure and temperature (NPT) molecular dynamics simulations are performed on time scales of several nanoseconds, the longest simulations yet reported using explicitly polarizable all-atom empirical potentials (for both solvent and protein) in the condensed phase. In terms of structure, the FQ force field allows deviations from native structure up to 2.5 A (with a range of 1.0 to 2.5 A). This is commensurate to the performance of the CHARMM22 nonpolarizable model and other currently existing polarizable models. Importantly, secondary structural elements maintain native structure in general to within 1 A (both helix and beta-strands), again in good agreement with the nonpolarizable case. In qualitative agreement with QM/MM ab initio dynamics on crambin (Liu et al. Proteins 2001, 44, 484), there is a sequence dependence of average condensed phase atomic charge for all proteins, a dependence one would anticipate considering the differing chemical environments around individual atoms; this is a subtle quantum mechanical feature captured in the FQ model but absent in current state-of-the-art nonpolarizable models. Furthermore, there is a mutual polarization of solvent and protein in the condensed phase. Solvent dipole moment distributions within the first and second solvation shells around the protein display a shift towards higher dipole moments (increases on the order of 0.2-0.3 Debye) relative to the bulk; protein polarization is manifested via the enhanced condensed phase charges of typical polar atoms such as backbone carbonyl oxygens, amide nitrogens, and amide hydrogens. Finally, to enlarge the sample set of proteins, gas-phase minimizations and 1 ps constant temperature simulations are performed on various-sized proteins to compare to earlier work by Kaminsky et al. (J Comp Chem 2002, 23, 1515). The present work establishes the feasibility of applying a fully polarizable force field for protein simulations and demonstrates the approach employed in extending the CHARMM force field to include these effects.

摘要

将波动电荷(FQ)力场应用于以TIP4P - FQ势表示的显式可极化溶剂中六种小蛋白质的分子动力学模拟。这些蛋白质包括1FSV、1ENH、1PGB、1VII、1H8K和1CRN,代表了螺旋和β - 折叠二级结构元件。在几个纳秒的时间尺度上进行恒压和恒温(NPT)分子动力学模拟,这是目前报道的在凝聚相中使用显式可极化全原子经验势(用于溶剂和蛋白质)进行的最长模拟。在结构方面,FQ力场允许与天然结构的偏差高达2.5 Å(范围为1.0至2.5 Å)。这与CHARMM22非极化模型和其他现有可极化模型的性能相当。重要的是,二级结构元件通常保持天然结构在1 Å以内(螺旋和β链均如此),这再次与非极化情况吻合良好。与对胰凝乳蛋白酶原进行的量子力学/分子力学从头算动力学(Liu等人《蛋白质》2001年,44卷,484页)定性一致,所有蛋白质的平均凝聚相原子电荷存在序列依赖性,考虑到单个原子周围不同的化学环境,可以预期这种依赖性;这是FQ模型中捕捉到的一个微妙的量子力学特征,但在当前最先进的非极化模型中不存在。此外,在凝聚相中溶剂和蛋白质存在相互极化。蛋白质周围第一和第二溶剂化壳层内溶剂偶极矩分布相对于本体显示出向更高偶极矩的偏移(增加幅度约为0.2 - 0.3德拜);蛋白质极化通过典型极性原子(如主链羰基氧、酰胺氮和酰胺氢)增强的凝聚相电荷体现出来。最后,为了扩大蛋白质样本集,对各种大小的蛋白质进行气相最小化和1 ps恒温模拟,以与Kaminsky等人(《计算化学杂志》2002年,23卷,1515页)早期的工作进行比较。本工作确立了应用完全可极化力场进行蛋白质模拟的可行性,并展示了将CHARMM力场扩展以包含这些效应所采用的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验