破解基因组的第二密码:通过系统发育足迹法与转基因鱼和蛙胚胎相结合进行增强子检测

Cracking the genome's second code: enhancer detection by combined phylogenetic footprinting and transgenic fish and frog embryos.

作者信息

Allende Miguel L, Manzanares Miguel, Tena Juan J, Feijóo Carmen G, Gómez-Skarmeta José Luis

机构信息

Millennium Nucleus in Developmental Biology, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.

出版信息

Methods. 2006 Jul;39(3):212-9. doi: 10.1016/j.ymeth.2005.12.005.

Abstract

Genes involved in vertebrate development are unusually enriched for highly conserved non-coding sequence elements. These regions are readily detected in silico, by genome-wide sequence comparisons between different vertebrates, from mammals to fish (phylogenetic footprinting). It follows that sequence conservation must be the result of positive selection for an essential physiological role. An obvious possibility is that these conserved sequences possess regulatory or structural functions important for gene expression and, thus, an in vivo assay becomes necessary. We have developed a rapid testing system using zebrafish and Xenopus laevis embryos that allows us to assign transcriptional regulatory functions to conserved non-coding sequence elements. The sequences are cloned into a vector containing a minimal promoter and the GFP reporter, and are assayed for their putative cis-regulatory activity in zebrafish or Xenopus transgenic experiments. Vectors used include plasmid DNA and the Tol2 transposon system in fish and X. laevis. We have followed this logic to detect and analyze conserved elements in an intergenic region present in the Iroquois (Irx) gene clusters of zebrafish, Xenopus tropicalis, Fugu rubripes and mouse. We have assayed approximately 50 of these conserved elements and shown that the majority behave as modular positive regulatory elements (enhancers) that contribute to specific temporal and spatial domains that are part of the endogenous gene expression pattern. Moreover, comparison of the activity of cognate Irx enhancers from different organisms demonstrates that conservation of sequence is accompanied by in vivo functional conservation across species. Finally, for some of the most conserved elements, we have been able to identify a critical core sequence, essential for correct enhancer function.

摘要

参与脊椎动物发育的基因在高度保守的非编码序列元件中异常富集。通过不同脊椎动物(从哺乳动物到鱼类)之间的全基因组序列比较(系统发育足迹法),这些区域很容易在计算机上检测到。因此,序列保守性必定是对基本生理作用进行正选择的结果。一种明显的可能性是,这些保守序列具有对基因表达很重要的调控或结构功能,因此,进行体内试验变得必要。我们利用斑马鱼和非洲爪蟾胚胎开发了一种快速检测系统,该系统使我们能够将转录调控功能赋予保守的非编码序列元件。这些序列被克隆到一个含有最小启动子和绿色荧光蛋白报告基因的载体中,并在斑马鱼或非洲爪蟾转基因实验中检测其假定的顺式调控活性。使用的载体包括质粒DNA以及鱼类和非洲爪蟾中的Tol2转座子系统。我们按照这一逻辑检测并分析了斑马鱼、热带爪蟾、红鳍东方鲀和小鼠的Iroquois(Irx)基因簇中一个基因间区域的保守元件。我们检测了大约50个这样的保守元件,结果表明,大多数元件表现为模块化的正调控元件(增强子),它们作用于特定的时间和空间域,这些域是内源基因表达模式的一部分。此外,对来自不同生物体的同源Irx增强子活性的比较表明,序列保守性伴随着跨物种的体内功能保守性。最后,对于一些最保守的元件,我们已经能够鉴定出对增强子正确功能至关重要的关键核心序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索