Suppr超能文献

脂质形状与膜曲率之间的耦合。

Coupling between lipid shape and membrane curvature.

作者信息

Cooke Ira R, Deserno Markus

机构信息

Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.

出版信息

Biophys J. 2006 Jul 15;91(2):487-95. doi: 10.1529/biophysj.105.078683.

Abstract

Using molecular dynamics simulations, we examine the behavior of lipids whose preferred curvature can be systematically varied. This curvature is imposed by controlling the headgroup size of a coarse-grained lipid model recently developed by us. To validate this approach, we examine self-assembly of each individual lipid type and observe the complete range of expected bilayer and micelle phases. We then examine binary systems consisting of lipids with positive and negative preferred curvature and find a definite sorting effect. Lipids with positive preferred curvature are found in greater proportions in outer monolayers with the opposite observed for lipids with negative preferred curvature. We also observe a similar, but slightly stronger effect for lipids in a developing spherical bud formed by adhesion to a colloid (e.g., a viral capsid). Importantly, the magnitude of this effect in both cases was large only for regions with strong mean curvature (radii of curvature <10 nm). Our results suggest that lipid shape must act in concert with other physico-chemical effects such as phase transitions or interactions with proteins to produce strong sorting in cellular pathways.

摘要

通过分子动力学模拟,我们研究了优选曲率可系统变化的脂质的行为。这种曲率是通过控制我们最近开发的粗粒度脂质模型的头基团大小来施加的。为了验证这种方法,我们研究了每种脂质类型的自组装,并观察了预期的双层和胶束相的完整范围。然后,我们研究了由具有正和负优选曲率的脂质组成的二元系统,并发现了明确的分选效应。在外部单分子层中,具有正优选曲率的脂质所占比例更大,而具有负优选曲率的脂质则相反。我们还观察到,对于通过粘附到胶体(如病毒衣壳)形成的正在发育的球形芽中的脂质,也有类似但稍强的效应。重要的是,在这两种情况下,只有在平均曲率强(曲率半径<10nm)的区域,这种效应的幅度才大。我们的结果表明,脂质形状必须与其他物理化学效应(如相变或与蛋白质的相互作用)协同作用,才能在细胞途径中产生强烈的分选。

相似文献

1
Coupling between lipid shape and membrane curvature.
Biophys J. 2006 Jul 15;91(2):487-95. doi: 10.1529/biophysj.105.078683.
2
Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations.
Phys Chem Chem Phys. 2009 Mar 28;11(12):2056-67. doi: 10.1039/b818782g. Epub 2009 Jan 29.
3
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations.
J Chem Phys. 2014 Nov 21;141(19):194902. doi: 10.1063/1.4901203.
5
Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5117-24. doi: 10.1073/pnas.1605259113. Epub 2016 Aug 16.
6
Curvature-driven lipid sorting in a membrane tubule.
Phys Rev Lett. 2008 Jul 4;101(1):018103. doi: 10.1103/PhysRevLett.101.018103. Epub 2008 Jul 3.
7
Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles.
Phys Rev Lett. 2012 Mar 16;108(11):118101. doi: 10.1103/PhysRevLett.108.118101. Epub 2012 Mar 14.
8
Solvent-free simulations of fluid membrane bilayers.
J Chem Phys. 2004 Jan 8;120(2):1059-71. doi: 10.1063/1.1625913.
9
Pattern formation on the surface of cationic-anionic cylindrical aggregates.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041920. doi: 10.1103/PhysRevE.72.041920. Epub 2005 Oct 19.
10
On the phase diagram of reentrant condensation in polyelectrolyte-liposome complexation.
J Chem Phys. 2004 Sep 8;121(10):4936-40. doi: 10.1063/1.1781112.

引用本文的文献

2
Sorting of complex sphingolipids within the cellular endomembrane systems.
Front Cell Dev Biol. 2025 Feb 26;12:1490870. doi: 10.3389/fcell.2024.1490870. eCollection 2024.
3
Diacylglycerol metabolism and homeostasis in fungal physiology.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae036.
4
Exploring the Properties of Curved Lipid Membranes: Comparative Analysis of Atomistic and Coarse-Grained Force Fields.
J Phys Chem B. 2024 Jul 25;128(29):7160-7171. doi: 10.1021/acs.jpcb.4c02310. Epub 2024 Jul 11.
5
Curvature Footprints of Transmembrane Proteins in Simulations with the Martini Force Field.
J Phys Chem B. 2024 Jun 27;128(25):5987-5994. doi: 10.1021/acs.jpcb.4c01385. Epub 2024 Jun 11.
7
Lipid shape and packing are key for optimal design of pH-sensitive mRNA lipid nanoparticles.
Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2311700120. doi: 10.1073/pnas.2311700120. Epub 2024 Jan 4.
9
Forceful patterning: theoretical principles of mechanochemical pattern formation.
EMBO Rep. 2023 Dec 6;24(12):e57739. doi: 10.15252/embr.202357739. Epub 2023 Nov 2.
10
The composition and function of membrane vesicles.
Microlife. 2021 Apr 12;2:uqab002. doi: 10.1093/femsml/uqab002. eCollection 2021.

本文引用的文献

1
Simulating the self-assembly of gemini (dimeric) surfactants.
Science. 1994 Oct 14;266(5183):254-6. doi: 10.1126/science.266.5183.254.
2
Branched threadlike micelles in an aqueous solution of a trimeric surfactant.
Science. 1995 Sep 8;269(5229):1420-1. doi: 10.1126/science.269.5229.1420.
4
Membrane curvature and mechanisms of dynamic cell membrane remodelling.
Nature. 2005 Dec 1;438(7068):590-6. doi: 10.1038/nature04396.
5
Implicit solvent simulation models for biomembranes.
Eur Biophys J. 2006 Jan;35(2):104-24. doi: 10.1007/s00249-005-0013-y. Epub 2005 Sep 27.
6
Cellular lipidomics.
EMBO J. 2005 Sep 21;24(18):3159-65. doi: 10.1038/sj.emboj.7600798. Epub 2005 Sep 1.
7
Tunable generic model for fluid bilayer membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011506. doi: 10.1103/PhysRevE.72.011506. Epub 2005 Jul 26.
8
Role of curvature and phase transition in lipid sorting and fission of membrane tubules.
EMBO J. 2005 Apr 20;24(8):1537-45. doi: 10.1038/sj.emboj.7600631. Epub 2005 Mar 24.
9
Lipid traffic: floppy drives and a superhighway.
Nat Rev Mol Cell Biol. 2005 Mar;6(3):209-20. doi: 10.1038/nrm1591.
10
Tension-induced fusion of bilayer membranes and vesicles.
Nat Mater. 2005 Mar;4(3):225-8. doi: 10.1038/nmat1333. Epub 2005 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验