Suppr超能文献

GEL:一种使用经验似然的新型基因型分型算法。

GEL: a novel genotype calling algorithm using empirical likelihood.

作者信息

Nicolae Dan L, Wu Xiaolin, Miyake Kazuaki, Cox Nancy J

机构信息

Department of Statistics, The University of Chicago.

出版信息

Bioinformatics. 2006 Aug 15;22(16):1942-7. doi: 10.1093/bioinformatics/btl341. Epub 2006 Jun 29.

Abstract

MOTIVATION

Preliminary results on the data produced using the Affymetrix large-scale genotyping platforms show that it is necessary to construct improved genotype calling algorithms. There is evidence that some of the existing algorithms lead to an increased error rate in heterozygous genotypes, and a disproportionately large rate of heterozygotes with missing genotypes. Non-random errors and missing data can lead to an increase in the number of false discoveries in genetic association studies. Therefore, the factors that need to be evaluated in assessing the performance of an algorithm are the missing data (call) and error rates, but also the heterozygous proportions in missing data and errors.

RESULTS

We introduce a novel genotype calling algorithm (GEL) for the Affymetrix GeneChip arrays. The algorithm uses likelihood calculations that are based on distributions inferred from the observed data. A key ingredient in accurate genotype calling is weighting the information that comes from each probe quartet according to the quality/reliability of the data in the quartet, and prior information on the performance of the quartet.

AVAILABILITY

The GEL software is implemented in R and is available by request from the corresponding author at nicolae@galton.uchicago.edu.

摘要

动机

使用Affymetrix大规模基因分型平台生成的数据的初步结果表明,有必要构建改进的基因型调用算法。有证据表明,一些现有算法会导致杂合基因型的错误率增加,以及基因型缺失的杂合子比例过高。非随机误差和缺失数据会导致基因关联研究中错误发现的数量增加。因此,在评估算法性能时需要评估的因素不仅包括缺失数据(调用)和错误率,还包括缺失数据和错误中的杂合比例。

结果

我们为Affymetrix基因芯片阵列引入了一种新颖的基因型调用算法(GEL)。该算法使用基于从观测数据推断出的分布的似然计算。准确进行基因型调用的一个关键因素是根据四重探针组中数据的质量/可靠性以及四重探针组性能的先验信息,对来自每个四重探针组的信息进行加权。

可用性

GEL软件用R语言实现,可通过向相应作者nicolae@galton.uchicago.edu索取获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验