Suppr超能文献

活细胞中荧光共振能量转移(FRET)效率及供体与受体浓度比值的测量。

Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells.

作者信息

Chen Huanmian, Puhl Henry L, Koushik Srinagesh V, Vogel Steven S, Ikeda Stephen R

机构信息

Laboratory of Molecular Physiology, Section on Transmitter Signaling and Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Biophys J. 2006 Sep 1;91(5):L39-41. doi: 10.1529/biophysj.106.088773. Epub 2006 Jun 30.

Abstract

Measurement of fluorescence resonance energy transfer (FRET) efficiency and the relative concentration of donor and acceptor fluorophores in living cells using the three-filter cube approach requires the determination of two constants: 1), the ratio of sensitized acceptor emission to donor fluorescence quenching (G factor) and 2), the ratio of donor/acceptor fluorescence intensity for equimolar concentrations in the absence of FRET (k factor). We have developed a method to determine G and k that utilizes two donor-acceptor fusion proteins with differing FRET efficiencies-the value of which need not be known. We validated the method by measuring the FRET efficiency and concentration ratio of the fluorescent proteins Cerulean and Venus in mammalian cells expressing a series of fusion proteins with varying stoichiometries. The method greatly simplifies quantitative FRET measurement in living cells as it does not require cell fixation, acceptor photobleaching, protein purification, or specialized equipment for determining fluorescence spectra or lifetime.

摘要

使用三滤光片立方体方法测量活细胞中荧光共振能量转移(FRET)效率以及供体和受体荧光团的相对浓度,需要确定两个常数:1)敏化受体发射与供体荧光猝灭的比率(G因子),以及2)在不存在FRET的情况下等摩尔浓度的供体/受体荧光强度比率(k因子)。我们开发了一种确定G和k的方法,该方法利用两种具有不同FRET效率的供体-受体融合蛋白——其值无需已知。我们通过测量表达一系列具有不同化学计量比的融合蛋白的哺乳动物细胞中荧光蛋白天蓝蛋白和维纳斯荧光蛋白的FRET效率和浓度比,验证了该方法。该方法极大地简化了活细胞中的定量FRET测量,因为它不需要细胞固定、受体光漂白、蛋白质纯化或用于确定荧光光谱或寿命的专门设备。

相似文献

1
Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells.
Biophys J. 2006 Sep 1;91(5):L39-41. doi: 10.1529/biophysj.106.088773. Epub 2006 Jun 30.
2
Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells.
Micron. 2016 Sep;88:7-15. doi: 10.1016/j.micron.2016.04.005. Epub 2016 Apr 19.
4
5
Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks.
Microsc Microanal. 2012 Oct;18(5):1021-9. doi: 10.1017/S1431927612001110. Epub 2012 Oct 2.
6
Fluorescence resonance energy transfer-based stoichiometry in living cells.
Biophys J. 2002 Dec;83(6):3652-64. doi: 10.1016/S0006-3495(02)75365-4.
7
Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
J Microsc. 2018 Nov;272(2):145-150. doi: 10.1111/jmi.12755. Epub 2018 Sep 14.
8
Anomalous surplus energy transfer observed with multiple FRET acceptors.
PLoS One. 2009 Nov 25;4(11):e8031. doi: 10.1371/journal.pone.0008031.

引用本文的文献

1
Local Iontophoretic Application for Pharmacological Induction of Long-Term Synaptic Depression.
Bio Protoc. 2025 Jun 5;15(11):e5338. doi: 10.21769/BioProtoc.5338.
2
A universal cannabinoid CB1 and CB2 receptor TR-FRET kinetic ligand-binding assay.
Front Pharmacol. 2025 Apr 9;16:1469986. doi: 10.3389/fphar.2025.1469986. eCollection 2025.
3
Direct Quantification of Protein-Protein Interactions in Living Bacterial Cells.
Adv Sci (Weinh). 2025 May;12(19):e2414777. doi: 10.1002/advs.202414777. Epub 2025 Mar 24.
4
Detection of fluorescent protein mechanical switching in cellulo.
Cell Rep Methods. 2024 Jul 15;4(7):100815. doi: 10.1016/j.crmeth.2024.100815. Epub 2024 Jul 9.
6
Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology.
J Microsc. 2025 May;298(2):123-184. doi: 10.1111/jmi.13270. Epub 2024 Feb 15.
7
Molecular basis and cellular functions of vinculin-actin directional catch bonding.
Nat Commun. 2023 Dec 14;14(1):8300. doi: 10.1038/s41467-023-43779-x.
8
Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton.
Nat Commun. 2023 Dec 4;14(1):8011. doi: 10.1038/s41467-023-43612-5.

本文引用的文献

2
Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer.
Biophys J. 2005 Oct;89(4):2736-49. doi: 10.1529/biophysj.105.061853. Epub 2005 Jul 22.
3
Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
J Microsc. 2005 Jun;218(Pt 3):253-62. doi: 10.1111/j.1365-2818.2005.01483.x.
4
Imaging protein molecules using FRET and FLIM microscopy.
Curr Opin Biotechnol. 2005 Feb;16(1):19-27. doi: 10.1016/j.copbio.2004.12.002.
5
Photobleaching-corrected FRET efficiency imaging of live cells.
Biophys J. 2004 Jun;86(6):3923-39. doi: 10.1529/biophysj.103.022087.
6
An improved cyan fluorescent protein variant useful for FRET.
Nat Biotechnol. 2004 Apr;22(4):445-9. doi: 10.1038/nbt945. Epub 2004 Feb 29.
7
Fluorescence resonance energy transfer-based stoichiometry in living cells.
Biophys J. 2002 Dec;83(6):3652-64. doi: 10.1016/S0006-3495(02)75365-4.
9
10
Evaluation of VP22 spread in tissue culture.
J Virol. 2000 Jan;74(2):1051-6. doi: 10.1128/jvi.74.2.1051-1056.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验