Suppr超能文献

系统发育和突变分析揭示了UDP-葡萄糖醛酸结合以及β1,3-葡萄糖醛酸基转移酶I(GlcAT-I)活性的关键残基。

Phylogenetic and mutational analyses reveal key residues for UDP-glucuronic acid binding and activity of beta1,3-glucuronosyltransferase I (GlcAT-I).

作者信息

Fondeur-Gelinotte Magali, Lattard Virginie, Oriol Rafael, Mollicone Rosella, Jacquinet Jean-Claude, Mulliert Guillermo, Gulberti Sandrine, Netter Patrick, Magdalou Jacques, Ouzzine Mohamed, Fournel-Gigleux Sylvie

机构信息

UMR 7561 CNRS-Université Henri Poincaré Nancy I, Faculté de Médecine, Vandoeuvre-lès-Nancy, France.

出版信息

Protein Sci. 2006 Jul;15(7):1667-78. doi: 10.1110/ps.062089106.

Abstract

The beta1,3-glucuronosyltransferases are responsible for the completion of the protein-glycosaminoglycan linkage region of proteoglycans and of the HNK1 epitope of glycoproteins and glycolipids by transferring glucuronic acid from UDP-alpha-D-glucuronic acid (UDP-GlcA) onto a terminal galactose residue. Here, we develop phylogenetic and mutational approaches to identify critical residues involved in UDP-GlcA binding and enzyme activity of the human beta1,3-glucuronosyltransferase I (GlcAT-I), which plays a key role in glycosaminoglycan biosynthesis. Phylogeny analysis identified 119 related beta1,3-glucuronosyltransferase sequences in vertebrates, invertebrates, and plants that contain eight conserved peptide motifs with 15 highly conserved amino acids. Sequence homology and structural information suggest that Y84, D113, R156, R161, and R310 residues belong to the UDP-GlcA binding site. The importance of these residues is assessed by site-directed mutagenesis, UDP affinity and kinetic analyses. Our data show that uridine binding is primarily governed by stacking interactions with the phenyl group of Y84 and also involves interactions with aspartate 113. Furthermore, we found that R156 is critical for enzyme activity but not for UDP binding, whereas R310 appears less important with regard to both activity and UDP interactions. These results clearly discriminate the function of these two active site residues that were predicted to interact with the pyrophosphate group of UDP-GlcA. Finally, mutation of R161 severely compromises GlcAT-I activity, emphasizing the major contribution of this invariant residue. Altogether, this phylogenetic approach sustained by biochemical analyses affords new insight into the organization of the beta1,3-glucuronosyltransferase family and distinguishes the respective importance of conserved residues in UDP-GlcA binding and activity of GlcAT-I.

摘要

β1,3-葡糖醛酸基转移酶负责通过将UDP-α-D-葡糖醛酸(UDP-GlcA)中的葡糖醛酸转移到末端半乳糖残基上,来完成蛋白聚糖的蛋白质-糖胺聚糖连接区域以及糖蛋白和糖脂的HNK1表位。在此,我们开发了系统发育和突变方法,以鉴定参与人β1,3-葡糖醛酸基转移酶I(GlcAT-I)的UDP-GlcA结合和酶活性的关键残基,该酶在糖胺聚糖生物合成中起关键作用。系统发育分析在脊椎动物、无脊椎动物和植物中鉴定出119个相关的β1,3-葡糖醛酸基转移酶序列,这些序列包含8个保守肽基序和15个高度保守的氨基酸。序列同源性和结构信息表明,Y84、D113、R156、R161和R310残基属于UDP-GlcA结合位点。通过定点诱变、UDP亲和力和动力学分析来评估这些残基的重要性。我们的数据表明,尿苷结合主要由与Y84苯环的堆积相互作用决定,并且还涉及与天冬氨酸113的相互作用。此外,我们发现R156对酶活性至关重要,但对UDP结合不重要,而R310在活性和UDP相互作用方面似乎不太重要。这些结果清楚地区分了这两个预测与UDP-GlcA焦磷酸基团相互作用的活性位点残基的功能。最后,R161的突变严重损害了GlcAT-I的活性,强调了这个不变残基的主要贡献。总之,这种由生化分析支持的系统发育方法为β1,3-葡糖醛酸基转移酶家族的组织提供了新的见解,并区分了保守残基在UDP-GlcA结合和GlcAT-I活性中的各自重要性。

相似文献

4
The functional glycosyltransferase signature sequence of the human beta 1,3-glucuronosyltransferase is a XDD motif.
J Biol Chem. 2003 Aug 22;278(34):32219-26. doi: 10.1074/jbc.M207899200. Epub 2003 Jun 6.
6
Binding of the substrate UDP-glucuronic acid induces conformational changes in the xanthan gum glucuronosyltransferase.
Protein Eng Des Sel. 2016 Jun;29(6):197-207. doi: 10.1093/protein/gzw007. Epub 2016 Apr 19.
9
Arginine-259 of UGT2B7 Confers UDP-Sugar Selectivity.
Mol Pharmacol. 2020 Dec;98(6):710-718. doi: 10.1124/molpharm.120.000104. Epub 2020 Oct 2.
10
Structural and functional studies of UDP-glucuronosyltransferases.
Drug Metab Rev. 1999 Nov;31(4):817-99. doi: 10.1081/dmr-100101944.

引用本文的文献

1
Enzymatic Routes for Chiral Amine Synthesis: Protein Engineering and Process Optimization.
Biologics. 2024 Jun 25;18:165-179. doi: 10.2147/BTT.S446712. eCollection 2024.
4
Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in Charophycean green algae.
PLoS One. 2015 May 29;10(5):e0128409. doi: 10.1371/journal.pone.0128409. eCollection 2015.
5
Deciphering the glycogenome of schistosomes.
Front Genet. 2014 Aug 5;5:262. doi: 10.3389/fgene.2014.00262. eCollection 2014.
9
A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan.
Plant Physiol. 2007 May;144(1):43-53. doi: 10.1104/pp.106.094995. Epub 2007 Mar 9.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
3
Structures and mechanisms of glycosyltransferases.
Glycobiology. 2006 Feb;16(2):29R-37R. doi: 10.1093/glycob/cwj016. Epub 2005 Jul 21.
4
The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach.
Glycobiology. 2005 Aug;15(8):805-17. doi: 10.1093/glycob/cwi063. Epub 2005 Apr 20.
5
Stimulation of proteoglycan synthesis by glucuronosyltransferase-I gene delivery: a strategy to promote cartilage repair.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18087-92. doi: 10.1073/pnas.0404504102. Epub 2004 Dec 15.
7
Role of glycosylation in development.
Annu Rev Biochem. 2004;73:491-537. doi: 10.1146/annurev.biochem.73.011303.074043.
8
Involvement of stromal proteoglycans in tumour progression.
Crit Rev Oncol Hematol. 2004 Mar;49(3):259-68. doi: 10.1016/j.critrevonc.2003.10.005.
10
Developmental roles of heparan sulfate proteoglycans in Drosophila.
Glycoconj J. 2002 May-Jun;19(4-5):363-8. doi: 10.1023/A:1025329323438.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验