Suppr超能文献

肠炎沙门氏菌中依赖σ28的转录与鞭毛剪切无关。

sigma28-dependent transcription in Salmonella enterica is independent of flagellar shearing.

作者信息

Rosu Valentina, Hughes Kelly T

机构信息

Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Bacteriol. 2006 Jul;188(14):5196-203. doi: 10.1128/JB.00299-06.

Abstract

The FlgM anti-sigma28 factor is secreted in response to flagellar hook-basal body completion to allow sigma28-dependent transcription of genes needed late in flagellar assembly, such as the flagellin structural gene, fliC. A long-standing hypothesis was that one role of FlgM secretion was to allow rapid expression of flagellin in response to shearing. We tested this hypothesis by following FlgM secretion and fliC transcription in response to flagellar shearing. Experiments showed that the level of FlgM inside the cell was unchanged after shearing whereas the extracellular FlgM levels increased in the growth medium as time passed. Identical results were obtained with cells that were not exposed to shear forces: internal FlgM levels remained constant while external FlgM levels rose with time at rates similar to those for the sheared culture. Consistent with this find, FlgM/sigma28-dependent class 3 gene expression was unaffected by flagellar shearing but was affected by the growth phase of the cell. Regardless of exposure to shear forces, flagellar class 3 transcription rose sharply and then declined. These results demonstrate that flagellar regrowth following shearing is independent of FlgM secretion.

摘要

FlgM抗σ28因子在鞭毛钩-基体完成组装时被分泌,从而允许σ28依赖性转录鞭毛组装后期所需的基因,如鞭毛蛋白结构基因fliC。长期以来的一个假说是,FlgM分泌的一个作用是响应剪切力使鞭毛蛋白快速表达。我们通过追踪FlgM分泌和fliC转录对鞭毛剪切的响应来验证这一假说。实验表明,剪切后细胞内FlgM水平未变,而随着时间推移,生长培养基中细胞外FlgM水平升高。未暴露于剪切力的细胞也得到了相同的结果:细胞内FlgM水平保持恒定,而细胞外FlgM水平随时间升高,速率与剪切培养的细胞相似。与此发现一致,FlgM/σ28依赖性3类基因表达不受鞭毛剪切影响,但受细胞生长阶段影响。无论是否暴露于剪切力,鞭毛3类转录均先急剧上升然后下降。这些结果表明,剪切后鞭毛的重新生长与FlgM分泌无关。

相似文献

1
sigma28-dependent transcription in Salmonella enterica is independent of flagellar shearing.
J Bacteriol. 2006 Jul;188(14):5196-203. doi: 10.1128/JB.00299-06.
3
4
Continuous control of flagellar gene expression by the σ28-FlgM regulatory circuit in Salmonella enterica.
Mol Microbiol. 2011 Jan;79(1):264-78. doi: 10.1111/j.1365-2958.2010.07444.x. Epub 2010 Nov 17.
7
Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis.
Mol Microbiol. 2007 Jul;65(1):76-89. doi: 10.1111/j.1365-2958.2007.05770.x. Epub 2007 May 30.
8
Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator.
Science. 1993 Nov 19;262(5137):1277-80. doi: 10.1126/science.8235660.
9
Temperature-dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length.
Mol Microbiol. 2010 Mar;75(6):1577-91. doi: 10.1111/j.1365-2958.2010.07079.x. Epub 2010 Feb 23.

引用本文的文献

1
Construction and Loss of Bacterial Flagellar Filaments.
Biomolecules. 2020 Nov 9;10(11):1528. doi: 10.3390/biom10111528.
2
γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures.
PLoS Biol. 2019 Mar 19;17(3):e3000165. doi: 10.1371/journal.pbio.3000165. eCollection 2019 Mar.
3
A -acting leader RNA from a virulence gene.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10232-10237. doi: 10.1073/pnas.1705437114. Epub 2017 Sep 5.
4
Variability in bacterial flagella re-growth patterns after breakage.
Sci Rep. 2017 Apr 28;7(1):1282. doi: 10.1038/s41598-017-01302-5.
5
Bacterial flagella grow through an injection-diffusion mechanism.
Elife. 2017 Mar 6;6:e23136. doi: 10.7554/eLife.23136.
6
Mathematical model of flagella gene expression dynamics in Salmonella enterica serovar typhimurium.
Syst Synth Biol. 2015 Jun;9(1-2):19-31. doi: 10.1007/s11693-015-9160-3. Epub 2015 Feb 4.
7
Fundamental constraints on the abundances of chemotaxis proteins.
Biophys J. 2015 Mar 10;108(5):1293-305. doi: 10.1016/j.bpj.2015.01.024.
8
Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12883-8. doi: 10.1073/pnas.1410551111. Epub 2014 Aug 20.

本文引用的文献

1
Sensing wetness: a new role for the bacterial flagellum.
EMBO J. 2005 Jun 1;24(11):2034-42. doi: 10.1038/sj.emboj.7600668. Epub 2005 May 5.
3
The effect of non-lethal deflagellation on bacterial motility and observations on flagellar regeneration.
J Gen Microbiol. 1959 Jun;20(3):670-85. doi: 10.1099/00221287-20-3-670.
5
The bacterial flagellar cap as the rotary promoter of flagellin self-assembly.
Science. 2000 Dec 15;290(5499):2148-52. doi: 10.1126/science.290.5499.2148.
6
Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli.
Microbiol Mol Biol Rev. 2000 Dec;64(4):694-708. doi: 10.1128/MMBR.64.4.694-708.2000.
8
Translation/secretion coupling by type III secretion systems.
Cell. 2000 Aug 18;102(4):487-97. doi: 10.1016/s0092-8674(00)00053-2.
9
The bacterial flagellum: reversible rotary propellor and type III export apparatus.
J Bacteriol. 1999 Dec;181(23):7149-53. doi: 10.1128/JB.181.23.7149-7153.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验