Department of Life Sciences, Imperial College London, United Kingdom.
Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Giessen, Germany.
PLoS Biol. 2019 Mar 19;17(3):e3000165. doi: 10.1371/journal.pbio.3000165. eCollection 2019 Mar.
Bacteria switch only intermittently to motile planktonic lifestyles under favorable conditions. Under chronic nutrient deprivation, however, bacteria orchestrate a switch to stationary phase, conserving energy by altering metabolism and stopping motility. About two-thirds of bacteria use flagella to swim, but how bacteria deactivate this large molecular machine remains unclear. Here, we describe the previously unreported ejection of polar motors by γ-proteobacteria. We show that these bacteria eject their flagella at the base of the flagellar hook when nutrients are depleted, leaving a relic of a former flagellar motor in the outer membrane. Subtomogram averages of the full motor and relic reveal that this is an active process, as a plug protein appears in the relic, likely to prevent leakage across their outer membrane; furthermore, we show that ejection is triggered only under nutritional depletion and is independent of the filament as a possible mechanosensor. We show that filament ejection is a widespread phenomenon demonstrated by the appearance of relic structures in diverse γ-proteobacteria including Plesiomonas shigelloides, Vibrio cholerae, Vibrio fischeri, Shewanella putrefaciens, and Pseudomonas aeruginosa. While the molecular details remain to be determined, our results demonstrate a novel mechanism for bacteria to halt costly motility when nutrients become scarce.
细菌只有在有利条件下才会间歇性地切换到可移动的浮游生物生活方式。然而,在慢性营养缺乏的情况下,细菌会协调进入静止期,通过改变新陈代谢和停止运动来节省能量。大约三分之二的细菌使用鞭毛游动,但细菌如何使这个大型分子机器失活仍不清楚。在这里,我们描述了γ-变形菌以前未被报道的极性马达的排出。我们表明,当营养物质耗尽时,这些细菌会在鞭毛钩的底部排出它们的鞭毛,在外膜中留下一个以前的鞭毛马达的遗迹。完整马达和遗迹的子断层平均表明,这是一个活跃的过程,因为一个塞子蛋白出现在遗迹中,可能是为了防止它们的外膜泄漏;此外,我们表明,排出仅在营养物质耗尽时触发,并且与细丝作为可能的机械感受器无关。我们表明,细丝排出是一种广泛存在的现象,包括志贺氏变形杆菌、霍乱弧菌、发光弧菌、腐败希瓦氏菌和铜绿假单胞菌在内的多种γ-变形菌都出现了遗迹结构。虽然分子细节仍有待确定,但我们的结果表明,当营养物质变得稀缺时,细菌停止昂贵的运动是一种新的机制。