Rahman I, Adcock I M
Dept of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, MRBX 3.11106, 601 Elmwood Ave., Box 850, Rochester, NY 14642, USA.
Eur Respir J. 2006 Jul;28(1):219-42. doi: 10.1183/09031936.06.00053805.
Reactive oxygen species, either directly or via the formation of lipid peroxidation products, may play a role in enhancing inflammation through the activation of stress kinases (c-Jun activated kinase, extracellular signal-regulated kinase, p38) and redox-sensitive transcription factors, such as nuclear factor (NF)-kappaB and activator protein-1. This results in increased expression of a battery of distinct pro-inflammatory mediators. Oxidative stress activates NF-kappaB-mediated transcription of pro-inflammatory mediators either through activation of its activating inhibitor of kappaB-alpha kinase or the enhanced recruitment and activation of transcriptional co-activators. Enhanced NF-kappaB-co-activator complex formation results in targeted increases in histone modifications, such as acetylation leading to inflammatory gene expression. Emerging evidence suggests the glutathione redox couple may entail dynamic regulation of protein function by reversible disulphide bond formation on kinases, phosphatases and transcription factors. Oxidative stress also inhibits histone deacetylase activity and in doing so further enhances inflammatory gene expression and may attenuate glucocorticoid sensitivity. The antioxidant/anti-inflammatory effects of thiol molecules (glutathione, N-acetyl-L-cysteine and N-acystelyn, erdosteine), dietary polyphenols (curcumin-diferuloylmethane, cathechins/quercetin and reserveratol), specific spin traps, such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (extracellular superoxide dismutase (SOD) mimetic, SOD mimetic M40419 and SOD, and catalase manganic salen compound, eukarion-8), porphyrins (AEOL 10150 and AEOL 10113) and theophylline have all been shown to play a role in either controlling NF-kappaB activation or affecting histone modifications with subsequent effects on inflammatory gene expression in lung epithelial cells. Thus, oxidative stress regulates both key signal transduction pathways and histone modifications involved in lung inflammation. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in chronic obstructive pulmonary disease are also discussed.
活性氧簇,无论是直接作用还是通过脂质过氧化产物的形成,都可能通过激活应激激酶(c-Jun 氨基末端激酶、细胞外信号调节激酶、p38)和氧化还原敏感转录因子(如核因子 (NF)-κB 和激活蛋白-1)在增强炎症反应中发挥作用。这导致一系列不同的促炎介质表达增加。氧化应激通过激活其κB-α激酶激活抑制剂或增强转录共激活因子的募集和激活,从而激活 NF-κB 介导的促炎介质转录。NF-κB-共激活因子复合物形成的增强导致组蛋白修饰的靶向增加,例如乙酰化导致炎症基因表达。新出现的证据表明,谷胱甘肽氧化还原对可能通过在激酶、磷酸酶和转录因子上形成可逆的二硫键对蛋白质功能进行动态调节。氧化应激还抑制组蛋白脱乙酰酶活性,从而进一步增强炎症基因表达,并可能减弱糖皮质激素敏感性。硫醇分子(谷胱甘肽、N-乙酰-L-半胱氨酸和 N-乙酰半胱氨酸、厄多司坦)、膳食多酚(姜黄素-二阿魏酰甲烷、儿茶素/槲皮素和白藜芦醇)、特定的自旋捕获剂(如α-苯基-N-叔丁基硝酮)、催化抗氧化剂(细胞外超氧化物歧化酶 (SOD) 模拟物、SOD 模拟物 M40419 和 SOD,以及过氧化氢酶锰席夫碱化合物、优卡利昂-八)、卟啉(AEOL 10150 和 AEOL 10113)和茶碱的抗氧化/抗炎作用均已表明在控制 NF-κB 激活或影响组蛋白修饰以及随后对肺上皮细胞炎症基因表达的影响中发挥作用。因此,氧化应激调节参与肺部炎症的关键信号转导途径和组蛋白修饰。还讨论了增强肺抗氧化能力的各种方法以及抗氧化化合物在慢性阻塞性肺疾病中的临床试验。