Suppr超能文献

单子叶谷类作物水稻(Oryza sativa)中的质体转化及转基因向其后代的传递。

Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.

作者信息

Lee Sa Mi, Kang Kyungsu, Chung Hyungsup, Yoo Soon Hee, Xu Xiang Ming, Lee Seung-Bum, Cheong Jong-Joo, Daniell Henry, Kim Minkyun

机构信息

School of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea.

出版信息

Mol Cells. 2006 Jun 30;21(3):401-10.

Abstract

The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

摘要

质体转化方法具有许多独特的优势,包括高水平的转基因表达、多基因工程、转基因限制以及缺乏基因沉默和位置效应。将质体转化技术扩展到单子叶谷类作物(包括水稻),对于改善农艺性状以及高效生产药物或营养强化产品具有巨大潜力。在此,我们报道了在水稻中实现稳定质体转化的一个有前景的进展。我们培育出了可育的转质体水稻植株,并证明了质体表达的绿色荧光蛋白(GFP)和氨基糖苷3'-腺苷酸转移酶基因可传递给这些植株的后代。通过共聚焦显微镜和蛋白质免疫印迹分析证实,转基因叶绿体稳定表达了GFP。尽管所产生的水稻质体转化体被发现是异质体的,且转化效率需要进一步提高,但本研究为在谷类作物中使用质体转化技术建立了一系列参数。

相似文献

2
Stable plastid transformation of rice, a monocot cereal crop.
Biochem Biophys Res Commun. 2018 Sep 18;503(4):2376-2379. doi: 10.1016/j.bbrc.2018.06.164. Epub 2018 Jul 2.
4
Genetic transformation of the sugar beet plastome.
Transgenic Res. 2009 Feb;18(1):17-30. doi: 10.1007/s11248-008-9193-4. Epub 2008 Jun 13.
5
Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit.
Nat Biotechnol. 2001 Sep;19(9):870-5. doi: 10.1038/nbt0901-870.
6
Integration and Expression of gfp in the plastid of Medicago sativa L.
Methods Mol Biol. 2014;1132:375-87. doi: 10.1007/978-1-62703-995-6_25.
7
Transgenic plastids in basic research and plant biotechnology.
J Mol Biol. 2001 Sep 21;312(3):425-38. doi: 10.1006/jmbi.2001.4960.
8
Stable transformation of the cotton plastid genome and maternal inheritance of transgenes.
Plant Mol Biol. 2004 Sep;56(2):203-16. doi: 10.1007/s11103-004-2907-y.
9
Challenges and perspectives in commercializing plastid transformation technology.
J Exp Bot. 2016 Nov;67(21):5945-5960. doi: 10.1093/jxb/erw360. Epub 2016 Oct 3.
10
Genetic engineering of the chloroplast: novel tools and new applications.
Curr Opin Biotechnol. 2014 Apr;26:7-13. doi: 10.1016/j.copbio.2013.06.004. Epub 2013 Aug 31.

引用本文的文献

1
Recent trends and advances in chloroplast engineering and transformation methods.
Front Plant Sci. 2025 Apr 17;16:1526578. doi: 10.3389/fpls.2025.1526578. eCollection 2025.
2
Towards assembling functional cyanobacterial β-carboxysomes in Oryza sativa chloroplasts.
Funct Integr Genomics. 2025 Jan 3;25(1):5. doi: 10.1007/s10142-024-01518-5.
3
Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years.
Curr Genomics. 2023 Feb 14;23(6):369-384. doi: 10.2174/1389202924666221201140603.
5
Advances in plastid transformation for metabolic engineering in higher plants.
aBIOTECH. 2022 Oct 1;3(3):224-232. doi: 10.1007/s42994-022-00083-4. eCollection 2022 Sep.
6
The chloroplast genome of and characterization of chloroplast regulatory elements.
Front Plant Sci. 2022 Aug 26;13:987443. doi: 10.3389/fpls.2022.987443. eCollection 2022.
7
Engineering the plastid and mitochondrial genomes of flowering plants.
Nat Plants. 2022 Sep;8(9):996-1006. doi: 10.1038/s41477-022-01227-6. Epub 2022 Aug 29.
8
Transformation of the Plastid Genome in Tobacco Suspension Cell Cultures.
Methods Mol Biol. 2021;2317:167-175. doi: 10.1007/978-1-0716-1472-3_8.
9
Advancing organelle genome transformation and editing for crop improvement.
Plant Commun. 2021 Jan 4;2(2):100141. doi: 10.1016/j.xplc.2021.100141. eCollection 2021 Mar 8.

本文引用的文献

1
Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts.
Plant Cell Rep. 2000 Jan;19(3):257-262. doi: 10.1007/s002990050008.
3
High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts.
Plant Biotechnol J. 2004 Mar;2(2):141-53. doi: 10.1046/j.1467-7652.2004.00057.x.
4
The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts.
EMBO J. 1987 Nov;6(11):3233-7. doi: 10.1002/j.1460-2075.1987.tb02640.x.
6
Stable plastid transformation in lettuce (Lactuca sativa L.).
Plant Mol Biol. 2005 Aug;58(6):763-774. doi: 10.1007/s11103-005-7704-8.
8
Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus.
Virology. 2005 Nov 25;342(2):266-75. doi: 10.1016/j.virol.2005.08.009. Epub 2005 Sep 2.
10
Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation.
Plant Physiol. 2005 Jul;138(3):1746-62. doi: 10.1104/pp.105.063040. Epub 2005 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验