Suppr超能文献

前列腺癌中TMPRSS2/ERG融合的三色荧光原位杂交分析表明,21号染色体的基因组微缺失与重排有关。

Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement.

作者信息

Yoshimoto Maisa, Joshua Anthony M, Chilton-Macneill Susan, Bayani Jane, Selvarajah Shamini, Evans Andrew J, Zielenska Maria, Squire Jeremy A

机构信息

Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada.

出版信息

Neoplasia. 2006 Jun;8(6):465-9. doi: 10.1593/neo.06283.

Abstract

The recent description of novel recurrent gene fusions in approximately 80% of prostate cancer (PCa) cases has generated increased interest in the search for new translocations in other epithelial cancers and emphasizes the importance of understanding the origins and biologic implications of these genomic rearrangements. Analysis of 15 PCa cases by reverse transcription-polymerase chain reaction was used to detect six ERG-related gene fusion transcripts with TMPRSS2. No TMPRSS2/ETV1 chimeric fusion was detected in this series. Three-color fluorescence in situ hybridization confirms that TMPRSS2/ERG fusion may be accompanied by a small hemizygous sequence deletion on chromosome 21 between ERG and TMPRSS2 genes. Analysis of genomic architecture in the region of genomic rearrangement suggests that tracts of microhomology could facilitate TMPRSS2/ERG fusion events.

摘要

最近在大约80%的前列腺癌(PCa)病例中发现了新的复发性基因融合,这引发了人们对在其他上皮性癌症中寻找新易位的更多兴趣,并强调了理解这些基因组重排的起源和生物学意义的重要性。通过逆转录-聚合酶链反应对15例PCa病例进行分析,以检测六种与ERG相关的基因融合转录本与TMPRSS2。在该系列中未检测到TMPRSS2/ETV1嵌合融合。三色荧光原位杂交证实,TMPRSS2/ERG融合可能伴随着21号染色体上ERG和TMPRSS2基因之间的小半合子序列缺失。对基因组重排区域的基因组结构分析表明,微同源序列片段可能促进TMPRSS2/ERG融合事件。

相似文献

5
A novel four-color fluorescence in situ hybridization assay for the detection of TMPRSS2 and ERG rearrangements in prostate cancer.
Cancer Genet. 2013 Jan-Feb;206(1-2):1-11. doi: 10.1016/j.cancergen.2012.12.004. Epub 2013 Jan 24.
6
7
TMPRSS2:ETS fusions and clinicopathologic characteristics of prostate cancer patients from Eastern China.
Asian Pac J Cancer Prev. 2014;15(7):3099-103. doi: 10.7314/apjcp.2014.15.7.3099.
8
Morphological features of TMPRSS2-ERG gene fusion prostate cancer.
J Pathol. 2007 May;212(1):91-101. doi: 10.1002/path.2154.
9
Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer.
Cancer Res. 2008 May 15;68(10):3584-90. doi: 10.1158/0008-5472.CAN-07-6154.
10
Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer.
Mod Pathol. 2007 May;20(5):538-44. doi: 10.1038/modpathol.3800769. Epub 2007 Mar 2.

引用本文的文献

1
Oncogenic Fusions Harboring Genes: Exploring Novel Targetable Opportunities in Prostate Cancer.
Cancers (Basel). 2025 May 14;17(10):1657. doi: 10.3390/cancers17101657.
2
Genomic and Immunologic Correlates in Prostate Cancer with High Expression of KLK2.
Int J Mol Sci. 2024 Feb 13;25(4):2222. doi: 10.3390/ijms25042222.
3
The potential role of the microbiota in prostate cancer pathogenesis and treatment.
Nat Rev Urol. 2023 Dec;20(12):706-718. doi: 10.1038/s41585-023-00795-2. Epub 2023 Jul 25.
4
The evolving landscape of prostate cancer somatic mutations.
Prostate. 2022 Aug;82 Suppl 1(Suppl 1):S13-S24. doi: 10.1002/pros.24353.
5
Interstitial Deletions Generating Fusion Genes.
Cancer Genomics Proteomics. 2021 May-Jun;18(3):167-196. doi: 10.21873/cgp.20251.
6
Establishment of Novel DNA Methylation-Based Prostate Cancer Subtypes and a Risk-Predicting Eight-Gene Signature.
Front Cell Dev Biol. 2021 Feb 23;9:639615. doi: 10.3389/fcell.2021.639615. eCollection 2021.
7
The Genetic Complexity of Prostate Cancer.
Genes (Basel). 2020 Nov 25;11(12):1396. doi: 10.3390/genes11121396.
8
Loss of Notch1 Activity Inhibits Prostate Cancer Growth and Metastasis and Sensitizes Prostate Cancer Cells to Antiandrogen Therapies.
Mol Cancer Ther. 2019 Jul;18(7):1230-1242. doi: 10.1158/1535-7163.MCT-18-0804. Epub 2019 Apr 26.
9
Association between TMPRSS2:ERG fusion gene and the prostate cancer: systematic review and meta-analysis.
Cent European J Urol. 2018;71(4):410-419. doi: 10.5173/ceju.2018.1752. Epub 2018 Nov 5.
10
Preparation of fluorescent in situ hybridisation probes without the need for optimisation of fragmentation.
MethodsX. 2018 Nov 27;6:22-34. doi: 10.1016/j.mex.2018.11.015. eCollection 2019.

本文引用的文献

1
TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer.
Cancer Res. 2006 Apr 1;66(7):3396-400. doi: 10.1158/0008-5472.CAN-06-0168.
2
Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer.
Genes Chromosomes Cancer. 2006 Jul;45(7):717-9. doi: 10.1002/gcc.20329.
3
Phenotypic analysis of mice lacking the Tmprss2-encoded protease.
Mol Cell Biol. 2006 Feb;26(3):965-75. doi: 10.1128/MCB.26.3.965-975.2006.
4
Chromosomal protein HMGN1 modulates the expression of N-cadherin.
FEBS J. 2005 Nov;272(22):5853-63. doi: 10.1111/j.1742-4658.2005.04980.x.
5
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.
Science. 2005 Oct 28;310(5748):644-8. doi: 10.1126/science.1117679.
6
ETS transcription factors and their emerging roles in human cancer.
Eur J Cancer. 2005 Nov;41(16):2462-78. doi: 10.1016/j.ejca.2005.08.013. Epub 2005 Oct 6.
7
Transforming growth factor beta and prostate cancer.
Cancer Treat Res. 2005;126:157-73. doi: 10.1007/0-387-24361-5_7.
8
N-cadherin switching occurs in high Gleason grade prostate cancer.
Prostate. 2006 Feb 1;66(2):193-9. doi: 10.1002/pros.20334.
9
Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1.
Cancer Res. 2005 Aug 1;65(15):6711-8. doi: 10.1158/0008-5472.CAN-05-0310.
10
Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses.
Biochem Biophys Res Commun. 2005 Jul 15;332(4):1107-14. doi: 10.1016/j.bbrc.2005.05.057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验