Suppr超能文献

基于新型DNA甲基化的前列腺癌亚型的建立及一种风险预测八基因特征

Establishment of Novel DNA Methylation-Based Prostate Cancer Subtypes and a Risk-Predicting Eight-Gene Signature.

作者信息

Zhang Enchong, Shiori Fujisawa, Mu Oscar YongNan, He Jieqian, Ge Yuntian, Wu Hongliang, Zhang Mo, Song Yongsheng

机构信息

Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.

Department of Breast and Endocrine Surgery, Tohoku University Hospital, Sendai, Japan.

出版信息

Front Cell Dev Biol. 2021 Feb 23;9:639615. doi: 10.3389/fcell.2021.639615. eCollection 2021.

Abstract

Prostate cancer (PCa) is the most common malignant tumor affecting males worldwide. The substantial heterogeneity in PCa presents a major challenge with respect to molecular analyses, patient stratification, and treatment. Least absolute shrinkage and selection operator was used to select eight risk-CpG sites. Using an unsupervised clustering analysis, called consensus clustering, we found that patients with PCa could be divided into two subtypes (Methylation_H and Methylation_L) based on the DNA methylation status at these CpG sites. Differences in the epigenome, genome, transcriptome, disease status, immune cell composition, and function between the identified subtypes were explored using The Cancer Genome Atlas database. This analysis clearly revealed the risk characteristics of the Methylation_H subtype. Using a weighted correlation network analysis to select risk-related genes and least absolute shrinkage and selection operator, we constructed a prediction signature for prognosis based on the subtype classification. We further validated its effectiveness using four public datasets. The two novel PCa subtypes and risk predictive signature developed in this study may be effective indicators of prognosis.

摘要

前列腺癌(PCa)是全球影响男性的最常见恶性肿瘤。PCa中存在的显著异质性在分子分析、患者分层和治疗方面带来了重大挑战。使用最小绝对收缩和选择算子来选择八个风险CpG位点。通过一种称为一致性聚类的无监督聚类分析,我们发现基于这些CpG位点的DNA甲基化状态,PCa患者可分为两个亚组(甲基化_H和甲基化_L)。使用癌症基因组图谱数据库探索了所识别亚组之间在表观基因组、基因组、转录组、疾病状态、免疫细胞组成和功能方面的差异。该分析清楚地揭示了甲基化_H亚组的风险特征。使用加权相关网络分析来选择风险相关基因并结合最小绝对收缩和选择算子,我们基于亚组分类构建了一个预后预测特征。我们使用四个公共数据集进一步验证了其有效性。本研究中开发的两种新型PCa亚组和风险预测特征可能是有效的预后指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517a/7940376/854f05412d38/fcell-09-639615-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验