Lui Kung-Jong
Department of Mathematics and Statistics, College of Sciences, San Diego State University, San Diego, CA 92182-7720, USA.
Stat Med. 2007 Jul 20;26(16):3140-56. doi: 10.1002/sim.2789.
In a randomized clinical trial (RCT), we often encounter non-compliance with the treatment protocol for a subset of patients. The intention-to-treat (ITT) analysis is probably the most commonly used method in a RCT with non-compliance. However, the ITT analysis estimates 'the programmatic effectiveness' rather than 'the biological efficacy'. In this paper, we focus attention on the latter index and consider use of the risk difference (RD) to measure the effect of a treatment. Based on a simple additive risk model proposed elsewhere, we develop four asymptotic interval estimators of the RD for repeated binary measurements in a RCT with non-compliance. We apply Monte Carlo simulation to evaluate and compare the finite-sample performance of these interval estimators in a variety of situations. We find that all interval estimators considered here can perform well with respect to the coverage probability. We further find that the interval estimator using a tanh(-1)(x) transformation is probably more precise than the others, while the interval estimator derived from a randomization-based approach may cause a slight loss of precision. When the number of patients per treatment is large and the probability of compliance to an assigned treatment is high, we find that all interval estimators discussed here are essentially equivalent. Finally, we illustrate use of these interval estimators with data simulated from a trial of using macrophage colony-stimulating factor to reduce febrile neutropenia incidence in acute myeloid leukaemia patients.
在一项随机临床试验(RCT)中,我们经常会遇到一部分患者不遵守治疗方案的情况。意向性分析(ITT)可能是RCT中处理不依从情况时最常用的方法。然而,ITT分析估计的是“方案有效性”而非“生物学疗效”。在本文中,我们关注的是后一个指标,并考虑使用风险差(RD)来衡量治疗效果。基于其他地方提出的一个简单的相加风险模型,我们针对存在不依从情况的RCT中的重复二元测量,开发了RD的四个渐近区间估计量。我们应用蒙特卡罗模拟来评估和比较这些区间估计量在各种情况下的有限样本性能。我们发现这里考虑的所有区间估计量在覆盖概率方面都能表现良好。我们进一步发现,使用tanh(-1)(x)变换的区间估计量可能比其他估计量更精确,而基于随机化方法导出的区间估计量可能会导致精度略有损失。当每种治疗的患者数量很大且对分配治疗的依从概率很高时,我们发现这里讨论的所有区间估计量基本等效。最后,我们用从一项使用巨噬细胞集落刺激因子降低急性髓系白血病患者发热性中性粒细胞减少症发生率的试验中模拟的数据来说明这些区间估计量的使用。