Tegze György, Pusztai Tamás, Tóth Gyula, Gránásy László, Svandal Atle, Buanes Trygve, Kuznetsova Tatyana, Kvamme Bjorn
Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary.
J Chem Phys. 2006 Jun 21;124(23):234710. doi: 10.1063/1.2207138.
A phase field theory with model parameters evaluated from atomistic simulations/experiments is applied to predict the nucleation and growth rates of solid CO(2) hydrate in aqueous solutions under conditions typical to underwater natural gas hydrate reservoirs. It is shown that under practical conditions a homogeneous nucleation of the hydrate phase can be ruled out. The growth rate of CO(2) hydrate dendrites has been determined from phase field simulations as a function of composition while using a physical interface thickness (0.85+/-0.07 nm) evaluated from molecular dynamics simulations. The growth rate extrapolated to realistic supersaturations is about three orders of magnitude larger than the respective experimental observation. A possible origin of the discrepancy is discussed. It is suggested that a kinetic barrier reflecting the difficulties in building the complex crystal structure is the most probable source of the deviations.
一种通过原子模拟/实验评估模型参数的相场理论,被用于预测水下天然气水合物储层典型条件下,水溶液中固态二氧化碳水合物的成核和生长速率。结果表明,在实际条件下,水合物相的均匀成核可以排除。利用分子动力学模拟评估的物理界面厚度(0.85±0.07纳米),通过相场模拟确定了二氧化碳水合物枝晶的生长速率与组成的函数关系。外推到实际过饱和度时的生长速率比相应的实验观测值大约大三个数量级。讨论了差异的可能来源。认为反映构建复杂晶体结构困难的动力学障碍是偏差最可能的来源。