Suppr超能文献

迈向完整的酵母线粒体蛋白质组:线粒体蛋白质组学的多维分离技术

Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics.

作者信息

Reinders Joerg, Zahedi René P, Pfanner Nikolaus, Meisinger Chris, Sickmann Albert

机构信息

Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.

出版信息

J Proteome Res. 2006 Jul;5(7):1543-54. doi: 10.1021/pr050477f.

Abstract

Proteomic analyses of different subcellular compartments, so-called organellar proteomics, facilitate the understanding of cellular functions on a molecular level. In this work, various orthogonal multidimensional separation techniques both on the protein and on the peptide level are compared with regard to the number of identified proteins as well as the classes of proteins accessible by the respective methodology. The most complete overview was achieved by a combination of such orthogonal techniques as shown by the analysis of the yeast mitochondrial proteome. A total of 851 different proteins (PROMITO dataset) were identified by use of multidimensional LC-MS/MS, 1D-SDS-PAGE combined with nano-LC-MS/MS and 2D-PAGE with subsequent MALDI-mass fingerprinting. Our PROMITO approach identified the 749 proteins, which were found in the largest previous study on the yeast mitochondrial proteome, and additionally 102 proteins including 42 open reading frames with unknown function, providing the basis for a more detailed elucidation of mitochondrial processes. Comparison of the different approaches emphasizes a bias of 2D-PAGE against proteins with very high isoelectric points as well as large and hydrophobic proteins, which can be accessed more appropriately by the other methods. While 2D-PAGE has advantages in the possible separation of protein isoforms and quantitative differential profiling, 1D-SDS-PAGE with nano-LC-MS/MS and multidimensional LC-MS/MS are better suited for efficient protein identification as they are less biased against distinct classes of proteins. Thus, comprehensive proteome analyses can only be realized by a combination of such orthogonal approaches, leading to the largest dataset available for the mitochondrial proteome of yeast.

摘要

对不同亚细胞区室进行蛋白质组学分析,即所谓的细胞器蛋白质组学,有助于在分子水平上理解细胞功能。在这项工作中,就已鉴定蛋白质的数量以及各自方法可检测到的蛋白质类别,对蛋白质和肽水平上的各种正交多维分离技术进行了比较。如对酵母线粒体蛋白质组的分析所示,通过组合此类正交技术可获得最完整的概况。使用多维液相色谱-串联质谱(LC-MS/MS)、一维十二烷基硫酸钠聚丙烯酰胺凝胶电泳(1D-SDS-PAGE)结合纳升液相色谱-串联质谱以及二维聚丙烯酰胺凝胶电泳(2D-PAGE)随后进行基质辅助激光解吸电离飞行时间质谱(MALDI-质谱指纹图谱),共鉴定出851种不同蛋白质(PROMITO数据集)。我们的PROMITO方法鉴定出了先前关于酵母线粒体蛋白质组的最大规模研究中所发现的749种蛋白质,另外还鉴定出102种蛋白质,包括42个功能未知的开放阅读框,为更详细阐释线粒体过程提供了基础。不同方法的比较强调了二维聚丙烯酰胺凝胶电泳对具有非常高的等电点以及大分子和疏水性蛋白质存在偏向性,而其他方法能更合适地检测这些蛋白质。虽然二维聚丙烯酰胺凝胶电泳在分离蛋白质异构体和定量差异分析方面具有优势,但一维十二烷基硫酸钠聚丙烯酰胺凝胶电泳结合纳升液相色谱-串联质谱以及多维液相色谱-串联质谱更适合高效蛋白质鉴定,因为它们对不同类别的蛋白质偏向性较小。因此,只有通过组合此类正交方法才能实现全面的蛋白质组分析,从而获得酵母线粒体蛋白质组可用的最大数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验