Suppr超能文献

用于设计扫描粒子束在线运动补偿系统的模拟。

Simulations to design an online motion compensation system for scanned particle beams.

作者信息

Grözinger Sven Oliver, Rietzel Eike, Li Qiang, Bert Christoph, Haberer Thomas, Kraft Gerhard

机构信息

Gesellschaft für Schwerionenforschung (GSI), 64291 Darmstadt, Germany.

出版信息

Phys Med Biol. 2006 Jul 21;51(14):3517-31. doi: 10.1088/0031-9155/51/14/016. Epub 2006 Jul 6.

Abstract

Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over- and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral as well as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/-15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation approximately 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.

摘要

呼吸诱导的靶区运动是调强放射治疗中的一个主要问题。射野分段依次照射以形成总剂量分布。在存在运动的情况下,不同射野分段的剂量沉积之间的空间关系将会丧失。通常,这会导致剂量过高和过低。除了光子治疗中已知的靶区运动与动态射野照射之间的这种相互作用效应外,内部密度的变化对调强带电粒子治疗的剂量传递也有影响。在本研究中,我们分析了光栅扫描碳离子束与靶区运动之间的相互作用效应。此外,还在若干模拟中评估了在线运动策略的潜力。使用临床治疗计划软件的扩展版本来计算有和没有运动补偿情况下运动靶区的剂量分布。对于运动补偿,每根单独的离子笔形束在横向和纵向跟踪计划的靶区位置。模拟了靶区的平移和旋转,包括内部密度的变化。模拟呼吸的靶区运动导致剂量分布严重退化。例如,对于±15毫米的运动幅度,只有47%的靶区体积接收到计划剂量的80%。通过改变运动参数证明了所得剂量分布的不可预测性。另一方面,运动补偿使得运动靶区的剂量分布与静态靶区的剂量分布相当。即使引入有限的补偿精度(标准差约2毫米)以模拟实时靶区跟踪可能存在的局限性,剂量均匀性的损失也小于3%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验