Li Qiang, Groezinger Sven Oliver, Haberer Thomas, Rietzel Eike, Kraft Gerhard
Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
Phys Med Biol. 2004 Jul 21;49(14):3029-46. doi: 10.1088/0031-9155/49/14/001.
Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.
靶区运动是每种高精度放射治疗的主要限制因素之一。使用先进的主动束流输送技术,如用于粒子照射的磁光栅扫描系统,随时间变化的束流与靶区位置之间的相互作用会严重扭曲所施加的剂量分布。本文提出了一种模拟环境,在该环境中,可以使用动态扫描离子束计算靶区运动对重离子照射的时间依赖性效应。在德国重离子研究中心(GSI)现有的用于静态靶区离子照射的治疗计划软件(TRiP)的扩展版本中,预期剂量分布被计算为单个靶区运动状态的几个子分布之和。为了研究通过在照射过程中调整治疗束的位置来对靶区运动进行主动补偿,在计算过程中可以改变计划的束流位置。将实际参数应用于GSI计划的运动补偿方法,可以针对不同的靶区配置和运动条件模拟靶区运动对预期剂量均匀性的影响。对于动态剂量计算,使用了实验测量的束流提取随时间变化的轮廓。初步模拟显示了磁扫描系统进行主动运动补偿的可行性和一致性,并揭示了一些改善运动靶区内剂量均匀性的策略。这里介绍的模拟环境为评估有或没有运动补偿情况下运动靶区体积的剂量分布提供了一种有效手段。它为GSI使用扫描离子束照射运动靶区体积的实验研究奠定了坚实基础,后续论文将对此进行介绍。