Suppr超能文献

卵巢癌反应和预后的分子预测指标

Molecular predictors of response and outcome in ovarian cancer.

作者信息

Canevari Silvana, Gariboldi Manuela, Reid James F, Bongarzone Italia, Pierotti Marco A

机构信息

Unit of Molecular Therapies, Department of Experimental Oncology, Istituto Nazionale Tumori, 20133-Milan, Italy.

出版信息

Crit Rev Oncol Hematol. 2006 Oct;60(1):19-37. doi: 10.1016/j.critrevonc.2006.03.003. Epub 2006 Jul 7.

Abstract

A major problem in clinical management of patients with epithelial ovarian cancer (EOC) is the largely unpredictable response to first-line treatment and the occurrence of relapse after complete initial response, associated with broad cross-resistance to even structurally dissimilar drugs. During tumor development and progression, multiple genic alterations take place that might contribute specifically to the treatment response and eventually impact on disease outcome. One area of intense research is the identification of molecular markers to accurately assess the prognosis of EOC patients and to define innovative therapeutic strategies. A large survey of recent published data indicates the need to revisit traditional molecular markers with respect to their contribution to the assessment of overall survival in selected populations. Furthermore, recent technological developments that enable simultaneous measurement of many parameters ("omic" approaches) hold the promise of identifying new molecular prognostic and predictive markers.

摘要

上皮性卵巢癌(EOC)患者临床管理中的一个主要问题是,对一线治疗的反应很大程度上不可预测,且在初始完全缓解后会出现复发,同时对即使结构不同的药物也存在广泛的交叉耐药性。在肿瘤发展和进展过程中,会发生多种基因改变,这些改变可能对治疗反应有特定影响,并最终影响疾病转归。一个深入研究的领域是识别分子标志物,以准确评估EOC患者的预后并确定创新的治疗策略。对近期发表数据的一项大型调查表明,需要重新审视传统分子标志物对特定人群总生存评估的贡献。此外,近期能够同时测量多个参数的技术发展(“组学”方法)有望识别新的分子预后和预测标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验