Suppr超能文献

乳腺癌中的临床蛋白质组学:综述

Clinical proteomics in breast cancer: a review.

作者信息

Gast Marie-Christine W, Schellens Jan H M, Beijnen Jos H

机构信息

Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands.

出版信息

Breast Cancer Res Treat. 2009 Jul;116(1):17-29. doi: 10.1007/s10549-008-0263-3. Epub 2008 Dec 11.

Abstract

Breast cancer imposes a significant healthcare burden on women worldwide. Early detection is of paramount importance in reducing mortality, yet the diagnosis of breast cancer is hampered by the lack of an adequate detection method. In addition, better breast cancer prognostication may improve selection of patients eligible for adjuvant therapy. Hence, new markers for early diagnosis, accurate prognosis and prediction of response to treatment are warranted to improve breast cancer care. Since proteomics can bridge the gap between the genetic alterations underlying cancer and cellular physiology, much is expected from proteome analyses for the detection of better protein biomarkers. Recent technical advances in mass spectrometry, such as matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and its variant surface-enhanced laser desorption/ionisation (SELDI-) TOF MS, have enabled high-throughput proteome analysis. In the current review, we give a comprehensive overview of the results of expression proteomics (i.e. protein profiling) research performed in breast cancer using these two platforms. Many protein peaks have been reported to bear significant diagnostic, prognostic or predictive value, however, only few candidate markers have been structurally identified yet. In addition, although of pivotal importance in preventing overfitting of data and systematic bias by pre-analytical parameters, validation of biomarker candidates by other, quantitative, methods and/or in new populations is very limited. Moreover, none of the identified candidate biomarkers has been investigated for their utility as breast cancer markers in large, prospective, clinical settings. As such, the candidate biomarkers discussed in this overview have not been validated sufficiently to be used for clinical patient care. Nonetheless, regarding the promising results up to now, MALDI- and SELDI-TOF MS protein profiling studies could eventually fulfil the great promise that protein biomarkers have for improving cancer patient outcome, provided that these studies are performed with adequate statistical power and analytical rigour.

摘要

乳腺癌给全球女性带来了沉重的医疗负担。早期检测对于降低死亡率至关重要,然而,乳腺癌的诊断因缺乏足够的检测方法而受到阻碍。此外,更好的乳腺癌预后评估可能会改善辅助治疗 eligible 患者的选择。因此,需要新的早期诊断、准确预后和预测治疗反应的标志物来改善乳腺癌治疗。由于蛋白质组学可以弥合癌症潜在基因改变与细胞生理学之间的差距,人们对蛋白质组分析检测更好的蛋白质生物标志物寄予厚望。质谱技术的最新进展,如基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)及其变体表面增强激光解吸/电离(SELDI-)TOF MS,已实现高通量蛋白质组分析。在本综述中,我们全面概述了使用这两个平台在乳腺癌中进行的表达蛋白质组学(即蛋白质谱分析)研究结果。许多蛋白质峰已被报道具有显著的诊断、预后或预测价值,然而,目前仅在结构上鉴定出少数候选标志物。此外,尽管在防止数据过度拟合和分析前参数导致的系统偏差方面至关重要,但通过其他定量方法和/或在新人群中对候选生物标志物进行验证的情况非常有限。而且,尚未在大型前瞻性临床环境中研究已鉴定的候选生物标志物作为乳腺癌标志物的效用。因此,本综述中讨论的候选生物标志物尚未得到充分验证,无法用于临床患者护理。尽管如此,鉴于目前取得的令人鼓舞的结果,只要以足够的统计能力和分析严谨性进行这些研究,MALDI-和SELDI-TOF MS蛋白质谱分析研究最终可能实现蛋白质生物标志物改善癌症患者预后的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验