Giovannelli Jean-François
Laboratoire des Signaux et Systèmes (CNRS-Supèlec-UPS), Supélec, 91192 Gif-sur-Yvette, France.
IEEE Trans Image Process. 2008 Jan;17(1):16-26. doi: 10.1109/tip.2007.911819.
This paper proposes a non-Gaussian Markov field with a special feature: an explicit partition function. To the best of our knowledge, this is an original contribution. Moreover, the explicit expression of the partition function enables the development of an unsupervised edge-preserving convex deconvolution method. The method is fully Bayesian, and produces an estimate in the sense of the posterior mean, numerically calculated by means of a Monte-Carlo Markov chain technique. The approach is particularly effective and the computational practicability of the method is shown on a simple simulated example.
一个显式的配分函数。据我们所知,这是一项原创贡献。此外,配分函数的显式表达式使得能够开发一种无监督的保边缘凸反卷积方法。该方法是完全贝叶斯的,并以后验均值的意义产生一个估计值,通过蒙特卡罗马尔可夫链技术进行数值计算。该方法特别有效,并且在一个简单的模拟示例上展示了该方法的计算实用性。