Noack E, Feelisch M
Institute of Pharmacology, Heinrich-Heine-University, Düsseldorf, FRG.
Basic Res Cardiol. 1991;86 Suppl 2:37-50. doi: 10.1007/978-3-642-72461-9_5.
All nitrovasodilators act intracellularly by a common molecular mechanism. This is characterized by the release of nitric oxide (NO). They are, thus, prodrugs or carriers of the active principle NO, responsible for endothelial controlled vasodilation. The rate of NO-formation strongly correlates with the activation of the soluble guanylate cyclase in vitro, resulting in a stimulation of cGMP synthesis. Nitrovasodilators thus are therapeutic substitutes for endogenous EDRF/NO. The pathways of bioactivation, nevertheless, differ substantially, depending on the individual chemistry of the nitrovasodilator. Besides NO, numerous other reaction products such as nitrite and nitrate anions are formed. The guanylate cyclase is only activated if NO is liberated. In the case of organic nitrates such as GTN, NO is only formed if certain thiol compounds are present as an essential cofactor. The rate of NO-formation correlates with the number of nitrate ester groups and proceeds with a simultaneous nitrite formation (with a ratio of 1:14 in the presence of cysteine). Nitrosamines such as molsidomine do not need thiol compounds for bioactivation. They directly liberate NO from the ring-open A-forms. This process basically depends on the presence of oxygen as electron acceptor from the sydnonimine molecule. Therefore, besides NO also superoxide radicals are formed, which may react with the generated NO under formation of nitrate ions. Organic nitrites (such as amyl nitrite) require the preceding interaction with a mercapto group to form a S-nitrosothiol intermediate, from which finally NO radicals are liberated. Nitrosothiols (like S-nitroso-acetyl-penicillamine) and sodium nitroprusside spontaneously release NO. The molecules themselves do not possess a direct enzyme activating potency. In the presence of thiol compounds organic nitrites (e.g., amyl nitrite) and nitrosothiols may act as intermediary products of NO generation.
所有硝基血管扩张剂都通过一种共同的分子机制在细胞内发挥作用。其特征是释放一氧化氮(NO)。因此,它们是活性成分NO的前体药物或载体,负责内皮控制的血管舒张。体外NO形成的速率与可溶性鸟苷酸环化酶的激活密切相关,从而刺激cGMP的合成。因此,硝基血管扩张剂是内源性内皮舒张因子/NO的治疗替代品。然而,生物活化途径根据硝基血管扩张剂的具体化学结构有很大差异。除了NO,还会形成许多其他反应产物,如亚硝酸根和硝酸根阴离子。只有当NO释放时,鸟苷酸环化酶才会被激活。对于有机硝酸盐,如硝酸甘油(GTN),只有当某些硫醇化合物作为必需的辅因子存在时才会形成NO。NO形成的速率与硝酸酯基团的数量相关,并且在形成NO的同时会生成亚硝酸盐(在半胱氨酸存在下比例为1:14)。亚硝胺,如吗多明,生物活化不需要硫醇化合物。它们直接从开环的A形式中释放NO。这个过程基本上取决于作为电子受体的氧的存在,从亚胺分子中接受电子。因此,除了NO还会形成超氧自由基,它们可能与生成的NO反应生成硝酸根离子。有机亚硝酸盐(如亚硝酸戊酯)需要先与巯基相互作用形成S-亚硝基硫醇中间体,最终从中释放出NO自由基。亚硝基硫醇(如S-亚硝基乙酰青霉胺)和硝普钠会自发释放NO。这些分子本身不具有直接激活酶的能力。在硫醇化合物存在的情况下,有机亚硝酸盐(如亚硝酸戊酯)和亚硝基硫醇可能作为NO生成的中间产物。