Suppr超能文献

高通量基因组技术在乳腺癌研究与临床管理中的应用。遗传流行病学研究的发展态势。

High-throughput genomic technology in research and clinical management of breast cancer. Evolving landscape of genetic epidemiological studies.

作者信息

Low Yen-Ling, Wedrén Sara, Liu Jianjun

机构信息

Population Genetics, Genome Institute of Singapore, Singapore.

出版信息

Breast Cancer Res. 2006;8(3):209. doi: 10.1186/bcr1511. Epub 2006 Jun 28.

Abstract

Candidate polymorphism-based genetic epidemiological studies have yielded little success in the search for low-penetrance breast cancer susceptibility genes. The lack of progress is partially due to insufficient coverage of genomic regions with genetic markers, as well as economic constraints, limiting both the number of genetic targets and the number of individuals being studied. Recent rapid advances in high-throughput genotyping technology and our understanding of genetic variation patterns across the human genome are now revolutionizing the way in which genetic epidemiological studies are being designed and conducted. Genetic epidemiological studies are quickly progressing from candidate gene studies to comprehensive pathway investigation and, further, to genomic epidemiological studies where the whole human genome is being interrogated to identify susceptibility alleles. This paper reviews the evolving approaches in the search for low-penetrance breast cancer susceptibility gene variants and discusses their potential promises and pitfalls.

摘要

基于候选多态性的遗传流行病学研究在寻找低外显率乳腺癌易感基因方面成效甚微。进展不足部分归因于遗传标记对基因组区域的覆盖不充分,以及经济限制,这两者都限制了遗传靶点的数量和所研究个体的数量。高通量基因分型技术的近期快速发展以及我们对人类基因组遗传变异模式的理解,正在彻底改变遗传流行病学研究的设计和开展方式。遗传流行病学研究正迅速从候选基因研究发展到全面的通路研究,进而发展到基因组流行病学研究,即对整个人类基因组进行检测以识别易感等位基因。本文综述了寻找低外显率乳腺癌易感基因变异的不断演变的方法,并讨论了它们潜在的前景和陷阱。

相似文献

4
ERCC4 associated with breast cancer risk: a two-stage case-control study using high-throughput genotyping.
Cancer Res. 2006 Oct 1;66(19):9420-7. doi: 10.1158/0008-5472.CAN-06-1418.
5
Targets of genome copy number reduction in primary breast cancers identified by integrative genomics.
Genes Chromosomes Cancer. 2007 Mar;46(3):288-301. doi: 10.1002/gcc.20411.
6
Challenges of SNP genotyping and genetic variation: its future role in diagnosis and treatment of cancer.
Expert Rev Mol Diagn. 2006 May;6(3):319-31. doi: 10.1586/14737159.6.3.319.
7
Microarrays in breast cancer research and clinical practice--the future lies ahead.
Endocr Relat Cancer. 2006 Dec;13(4):1017-31. doi: 10.1677/erc.1.01246.
8
The search for low-penetrance cancer susceptibility alleles.
Oncogene. 2004 Aug 23;23(38):6471-6. doi: 10.1038/sj.onc.1207951.
9
Bioinformatics and breast cancer: what can high-throughput genomic approaches actually tell us?
J Clin Pathol. 2009 Oct;62(10):879-85. doi: 10.1136/jcp.2008.060376. Epub 2009 Jan 27.
10
Microarray-based DNA profiling to study genomic aberrations.
IUBMB Life. 2008 Jul;60(7):437-40. doi: 10.1002/iub.57.

本文引用的文献

1
Linkage disequilibrium mapping of CHEK2: common variation and breast cancer risk.
PLoS Med. 2006 Jun;3(6):e168. doi: 10.1371/journal.pmed.0030168. Epub 2006 May 9.
2
Using high-throughput SNP technologies to study cancer.
Oncogene. 2006 Mar 13;25(11):1594-601. doi: 10.1038/sj.onc.1209368.
4
An utter refutation of the "fundamental theorem of the HapMap".
Eur J Hum Genet. 2006 Apr;14(4):426-37. doi: 10.1038/sj.ejhg.5201583.
5
A road map for efficient and reliable human genome epidemiology.
Nat Genet. 2006 Jan;38(1):3-5. doi: 10.1038/ng0106-3.
6
Efficiency and power in genetic association studies.
Nat Genet. 2005 Nov;37(11):1217-23. doi: 10.1038/ng1669. Epub 2005 Oct 23.
7
SNPs in forensic genetics: a review on SNP typing methodologies.
Forensic Sci Int. 2005 Nov 25;154(2-3):181-94. doi: 10.1016/j.forsciint.2004.10.020. Epub 2005 Jan 11.
8
A comparison of tagging methods and their tagging space.
Hum Mol Genet. 2005 Sep 15;14(18):2757-67. doi: 10.1093/hmg/ddi309. Epub 2005 Aug 15.
10
Software for tag single nucleotide polymorphism selection.
Hum Genomics. 2005 Jun;2(2):144-51. doi: 10.1186/1479-7364-2-2-144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验