Suppr超能文献

通过对可变大小滑动窗口中的单核苷酸多态性单倍型进行正则化回归分析进行关联作图。

Association mapping via regularized regression analysis of single-nucleotide-polymorphism haplotypes in variable-sized sliding windows.

作者信息

Li Yi, Sung Wing-Kin, Liu Jian Jun

机构信息

Genome Institute of Singapore, Genome, Singapore, 138672, Republic of Singapore.

出版信息

Am J Hum Genet. 2007 Apr;80(4):705-15. doi: 10.1086/513205. Epub 2007 Feb 19.

Abstract

Large-scale haplotype association analysis, especially at the whole-genome level, is still a very challenging task without an optimal solution. In this study, we propose a new approach for haplotype association analysis that is based on a variable-sized sliding-window framework and employs regularized regression analysis to tackle the problem of multiple degrees of freedom in the haplotype test. Our method can handle a large number of haplotypes in association analyses more efficiently and effectively than do currently available approaches. We implement a procedure in which the maximum size of a sliding window is determined by local haplotype diversity and sample size, an attractive feature for large-scale haplotype analyses, such as a whole-genome scan, in which linkage disequilibrium patterns are expected to vary widely. We compare the performance of our method with that of three other methods--a test based on a single-nucleotide polymorphism, a cladistic analysis of haplotypes, and variable-length Markov chains--with use of both simulated and experimental data. By analyzing data sets simulated under different disease models, we demonstrate that our method consistently outperforms the other three methods, especially when the region under study has high haplotype diversity. Built on the regression analysis framework, our method can incorporate other risk-factor information into haplotype-based association analysis, which is becoming an increasingly necessary step for studying common disorders to which both genetic and environmental risk factors contribute.

摘要

大规模单倍型关联分析,尤其是在全基因组水平上,仍然是一项极具挑战性的任务,目前尚无最佳解决方案。在本研究中,我们提出了一种新的单倍型关联分析方法,该方法基于可变大小的滑动窗口框架,并采用正则化回归分析来解决单倍型检验中多自由度的问题。与目前可用的方法相比,我们的方法在关联分析中能够更高效、更有效地处理大量单倍型。我们实现了一种程序,其中滑动窗口的最大大小由局部单倍型多样性和样本大小决定,这对于大规模单倍型分析(如全基因组扫描)是一个有吸引力的特征,在全基因组扫描中,连锁不平衡模式预计会有很大差异。我们使用模拟数据和实验数据,将我们的方法与其他三种方法——基于单核苷酸多态性的检验、单倍型的分支分析和可变长度马尔可夫链——的性能进行了比较。通过分析在不同疾病模型下模拟的数据集,我们证明我们的方法始终优于其他三种方法,特别是当研究区域具有高单倍型多样性时。基于回归分析框架,我们的方法可以将其他风险因素信息纳入基于单倍型的关联分析,这对于研究遗传和环境风险因素共同作用的常见疾病来说,正日益成为一个必要步骤。

相似文献

3
Haplotype diversity in 11 candidate genes across four populations.四个群体中11个候选基因的单倍型多样性。
Genetics. 2005 Sep;171(1):259-67. doi: 10.1534/genetics.105.043075. Epub 2005 Jun 18.

引用本文的文献

7
Big Data: transforming drug development and health policy decision making.大数据:变革药物研发与卫生政策决策
Health Serv Outcomes Res Methodol. 2016;16:92-102. doi: 10.1007/s10742-016-0144-x. Epub 2016 Mar 5.
10

本文引用的文献

4
A haplotype map of the human genome.人类基因组单倍型图谱。
Nature. 2005 Oct 27;437(7063):1299-320. doi: 10.1038/nature04226.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验