Suppr超能文献

线粒体复合物I:结构、功能与病理学

Mitochondrial complex I: structure, function and pathology.

作者信息

Janssen Rolf J R J, Nijtmans Leo G, van den Heuvel Lambert P, Smeitink Jan A M

机构信息

Nijmegen Centre for Mitochondrial Disorders, Laboratory of Paediatrics and Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.

出版信息

J Inherit Metab Dis. 2006 Aug;29(4):499-515. doi: 10.1007/s10545-006-0362-4. Epub 2006 Jul 11.

Abstract

Oxidative phosphorylation (OXPHOS) has a prominent role in energy metabolism of the cell. Being under bigenomic control, correct biogenesis and functioning of the OXPHOS system is dependent on the finely tuned interaction between the nuclear and the mitochondrial genome. This suggests that disturbances of the system can be caused by numerous genetic defects and can result in a variety of metabolic and biochemical alterations. Consequently, OXPHOS deficiencies manifest as a broad clinical spectrum. Complex I, the biggest and most complicated enzyme complex of the OXPHOS system, has been subjected to thorough investigation in recent years. Significant progress has been made in the field of structure, composition, assembly, and pathology. Important gains in the understanding of the Goliath of the OXPHOS system are: exposing the electron transfer mechanism and solving the crystal structure of the peripheral arm, characterization of almost all subunits and some of their functions, and creating models to elucidate the assembly process with concomitant identification of assembly chaperones. Unravelling the intricate mechanisms underlying the functioning of this membrane-bound enzyme complex in health and disease will pave the way for developing adequate diagnostic procedures and advanced therapeutic treatment strategies.

摘要

氧化磷酸化(OXPHOS)在细胞能量代谢中起着重要作用。由于受双基因组控制,OXPHOS系统的正确生物合成和功能依赖于核基因组与线粒体基因组之间精确协调的相互作用。这表明该系统的紊乱可能由多种遗传缺陷引起,并可能导致各种代谢和生化改变。因此,OXPHOS缺陷表现出广泛的临床谱。复合体I是OXPHOS系统中最大且最复杂的酶复合体,近年来受到了深入研究。在结构、组成、组装和病理学领域取得了重大进展。在理解OXPHOS系统的“巨人”方面取得的重要成果包括:揭示电子传递机制并解析外周臂的晶体结构,对几乎所有亚基及其一些功能进行表征,以及创建模型以阐明组装过程并同时鉴定组装伴侣。阐明这种膜结合酶复合体在健康和疾病状态下发挥作用的复杂机制,将为开发适当的诊断程序和先进的治疗策略铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验