Golubiani Gocha, van Agen Laura, Tsverava Lia, Solomonia Revaz, Müller Michael
Institut für Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Universitätsmedizin Göttingen, D-37073 Göttingen, Germany.
Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia.
Biology (Basel). 2023 Jul 3;12(7):956. doi: 10.3390/biology12070956.
Rett syndrome (RTT) is a genetic neurodevelopmental disorder with mutations in the X-chromosomal (methyl-CpG-binding protein 2) gene. Most patients are young girls. For 7-18 months after birth, they hardly present any symptoms; later they develop mental problems, a lack of communication, irregular sleep and breathing, motor dysfunction, hand stereotypies, and seizures. The complex pathology involves mitochondrial structure and function. hippocampal astrocytes show increased mitochondrial contents. Neurons and glia suffer from oxidative stress, a lack of ATP, and increased hypoxia vulnerability. This spectrum of changes demands comprehensive molecular studies of mitochondria to further define their pathogenic role in RTT. Therefore, we applied a comparative proteomic approach for the first time to study the entity of mitochondrial proteins in a mouse model of RTT. In the neocortex and hippocampus of symptomatic male mice, two-dimensional gel electrophoresis and subsequent mass-spectrometry identified various differentially expressed mitochondrial proteins, including components of respiratory chain complexes I and III and the ATP-synthase FoF1 complex. The NADH-ubiquinone oxidoreductase 75 kDa subunit, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, NADH dehydrogenase [ubiquinone] flavoprotein 2, cytochrome b-c1 complex subunit 1, and ATP synthase subunit d are upregulated either in the hippocampus alone or both the hippocampus and neocortex of mice. Furthermore, the regulatory mitochondrial proteins mitofusin-1, HSP60, and 14-3-3 protein theta are decreased in the neocortex. The expressional changes identified provide further details of the altered mitochondrial function and morphology in RTT. They emphasize brain-region-specific alterations of the mitochondrial proteome and support the notion of a metabolic component of this devastating disorder.
雷特综合征(RTT)是一种遗传性神经发育障碍,由X染色体(甲基CpG结合蛋白2)基因突变引起。大多数患者为幼年女孩。出生后7至18个月,她们几乎没有任何症状;之后会出现精神问题、沟通障碍、睡眠和呼吸不规律、运动功能障碍、手部刻板动作以及癫痫发作。复杂的病理过程涉及线粒体的结构和功能。海马星形胶质细胞的线粒体含量增加。神经元和神经胶质细胞遭受氧化应激、ATP缺乏以及缺氧易感性增加。这种变化范围需要对线粒体进行全面的分子研究,以进一步确定其在RTT中的致病作用。因此,我们首次应用比较蛋白质组学方法研究RTT小鼠模型中线粒体蛋白质的实体。在有症状的雄性小鼠的新皮质和海马中,二维凝胶电泳及随后的质谱分析鉴定出各种差异表达的线粒体蛋白质,包括呼吸链复合物I和III以及ATP合酶FoF1复合物的成分。NADH-泛醌氧化还原酶75 kDa亚基、NADH脱氢酶[泛醌]铁硫蛋白8、NADH脱氢酶[泛醌]黄素蛋白2、细胞色素b-c1复合物亚基1和ATP合酶亚基d在小鼠的海马单独或海马和新皮质中均上调。此外,调节性线粒体蛋白线粒体融合蛋白-1、HSP60和14-3-3蛋白θ在新皮质中减少。所确定的表达变化进一步详细说明了RTT中线粒体功能和形态的改变。它们强调了线粒体蛋白质组的脑区特异性改变,并支持了这种毁灭性疾病存在代谢成分的观点。