Lozada-Chávez Irma, Janga Sarath Chandra, Collado-Vides Julio
Programa de Genomica Computacional, Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Apdo. Postal 565-A, Avenue Universidad, Cuernavaca, Morelos, 62100 Mexico, Mexico.
Nucleic Acids Res. 2006 Jul 13;34(12):3434-45. doi: 10.1093/nar/gkl423. Print 2006.
Over millions of years the structure and complexity of the transcriptional regulatory network (TRN) in bacteria has changed, reorganized and enabled them to adapt to almost every environmental niche on earth. In order to understand the plasticity of TRNs in bacteria, we studied the conservation of currently known TRNs of the two model organisms Escherichia coli K12 and Bacillus subtilis across complete genomes including Bacteria, Archaea and Eukarya at three different levels: individual components of the TRN, pairs of interactions and regulons. We found that transcription factors (TFs) evolve much faster than the target genes (TGs) across phyla. We show that global regulators are poorly conserved across the phylogenetic spectrum and hence TFs could be the major players responsible for the plasticity and evolvability of the TRNs. We also found that there is only a small fraction of significantly conserved transcriptional regulatory interactions among different phyla of bacteria and that there is no constraint on the elements of the interaction to co-evolve. Finally our results suggest that majority of the regulons in bacteria are rapidly lost implying a high-order flexibility in the TRNs. We hypothesize that during the divergence of bacteria certain essential cellular processes like the synthesis of arginine, biotine and ribose, transport of amino acids and iron, availability of phosphate, replication process and the SOS response are well conserved in evolution. From our comparative analysis, it is possible to infer that transcriptional regulation is more flexible than the genetic component of the organisms and its complexity and structure plays an important role in the phenotypic adaptation.
在数百万年的时间里,细菌中转录调控网络(TRN)的结构和复杂性发生了变化、重新组织,并使它们能够适应地球上几乎每一个生态位。为了了解细菌中TRN的可塑性,我们在三个不同层面研究了两种模式生物大肠杆菌K12和枯草芽孢杆菌目前已知的TRN在包括细菌、古菌和真核生物在内的完整基因组中的保守性:TRN的单个组件、相互作用对和调控子。我们发现,跨门的转录因子(TF)比靶基因(TG)进化得快得多。我们表明,全局调控因子在系统发育谱中保守性较差,因此TF可能是负责TRN可塑性和可进化性的主要因素。我们还发现,不同细菌门之间只有一小部分显著保守的转录调控相互作用,并且相互作用的元件没有共同进化的限制。最后,我们的结果表明,细菌中的大多数调控子迅速丢失,这意味着TRN具有高阶灵活性。我们假设,在细菌分化过程中,某些基本的细胞过程,如精氨酸、生物素和核糖的合成、氨基酸和铁的运输、磷酸盐的可用性、复制过程和SOS反应,在进化中得到了很好的保守。从我们的比较分析中,可以推断转录调控比生物体的遗传成分更灵活,其复杂性和结构在表型适应中起着重要作用。