Suppr超能文献

Neurochemical and immunocytochemical studies of catecholamine system in the brindled mouse.

作者信息

Satoh J, Irino M, Martin P M, Mailman R B, Suzuki K

机构信息

Department of Pathology, University of North Carolina, Chapel Hill 27599-7525.

出版信息

J Neuropathol Exp Neurol. 1991 Nov;50(6):793-808. doi: 10.1097/00005072-199111000-00010.

Abstract

The distribution of immunoreactive catecholamine neurons and fibers was investigated in brindled mottled mouse, a murine model of Kinky hair syndrome (KHS), using antisera against tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH). In all mice, including normal littermate controls, a transient increase of TH-immunoreactive neurons (TH-IN) was observed in the cerebral cortex during the second postnatal week. The numbers of TH-IN were more pronounced in hemizygous brindled males (MObr/y). In addition, TH-IN appeared and rapidly increased in number in the striatum of MObr/y after postnatal day 11 (P11). Striatal TH-IN were rarely detected in controls. After cupric chloride (CuCl2) treatment, TH-IN in the striatum of some of the MObr/y mice became less conspicuous. In the substantia nigra and ventral tegmental area where TH-IN are normally present, no differences either in the immunostaining of TH-IN or the pattern of TH immunoreactive fibers were detected between MObr/y and controls. In MObr/y, a superficial plexus of DBH immunoreactive fibers was more pronounced than in controls but there were no DBH immunoreactive neurons in the cerebral cortex or striatum in any of the mice examined. Neurochemical analysis revealed a marked decrease in norepinephrine levels and increase of serotonin and its metabolites in the brain in MObr/y. Together, these data suggest that the unusual expression of TH-IN in MObr/y represents perturbations of normal development of catecholamine neurons in this copper deficient mutant mouse.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验